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NUE-PSK Digital Modem 
Enables PSK31 field operation… without using a PC! 
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1Notes appear on page 12.

PSK31 is one of the latest communica-
tions modes to capture the interest of hams 
worldwide. Its inherent ability to dig out low, 
nearly inaudible signals is ideally suited for 
low power, QRP, enthusiasts. The PSK31 
digital modem engine, however, requires 
intense digital signal processing (DSP) that is 
only commonly available in PC sound cards. 
Thus, the PSK operator desiring portability 
for field operation is locked into using a lap-
top computer as a controller, which results in 
a cumbersome station. But there’s hope! 

This article presents the design and con-
struction of a stand-alone, battery-operated 
digital modem using a Microchip dsPIC 
microcontroller. The project includes a 
graphic display for transmit and receive text 
data, as well as a band spectrum and tuning 
indicator. Using GPL open source software, 
the modem can be homebrewed for less than 
$80. When coupled with an SSB-capable 
transceiver or with a popular PSK-xx trans-
ceiver board from Small Wonder Labs, you 
too can have an effective portable PSK31 
station. 

Background 
PSK31 was introduced in 1998 to the 

ham technical community at large in RSGB’s 
RadCom magazine.1 Hams could get on the 
air with this digital mode using a dedicated 
(expensive) DSP card, a crude DOS control 
program for entering/displaying messages, 
and interface cables for connection to the 
station SSB transceiver. Later, a brilliant PC 
program was developed (DigiPan) that used 
a panoramic graphical display to show all 
signals occurring within a band segment, and 
print received messages on the PC screen.2 
This was an astonishing improvement in 
the user interface for PSK31! Later in 2001, 
Dave Benson, K1SWL, designed a single 
board PSK31 transceiver kit (PSK-20) that 
required no physical tuning, and when used 
with DigiPan running on a PC, it made a 
quite compact PSK31 station.3 

Even with these clever hardware and 
software designs, however, there still was 

room for improvement. The sound card in 
a laptop or PC is still needed for the intense 
demodulation requirements of the PSK algo-
rithm. If you were to use a modern laptop for 
that computing power, taking an expensive 
and delicate computer into the field is a hair-
raising experience. It is difficult to see the 
subtle spectral lines or the screen text data 
when viewing a laptop LCD display in the 
bright sunlight of a mountaintop QSO. Then, 
only if your laptop battery lasts long enough 
to enjoy the fun of operating PSK out in the 
open, and if you can see the laptop display in 
the bright sunlight, and if you feel like lug-
ging that expensive laptop out into the harsh 
elements, you could indeed operate PSK31 
in the field — but what an ordeal! 

PSK MODULATION-
DEMODULATION OVERVIEW 

We will not go into great depth concern-
ing the theory and operation of PSK. In this 
paper we’ll first overview the PSK31 encod-
ing scheme, followed by the more demand-
ing decoding scheme. 

Note that while the NUE-PSK project 
focuses on the generation and decoding of 
PSK31, it is generally known that PSK31 is 
merely one of many modulation techniques 
within the “phase shift keying” family of 
communication techniques. PSK31 operates 
at 31.25 bits/second, while other speeds may 

be achieved using slight algorithmic varia-
tions. PSK is perhaps more accurately termed 
BPSK, for bi-phase shift keying, whereby 
two distinct phase states separated by 180° 
are used to convey the information. Four 
states may also be encoded/decoded, as is 
done with QPSK (quad-phase shift keying), 
in order to provide higher speeds and the abil-
ity for better error correction methods. 

We will primarily describe the topic of 
PSK31, yet understand that some of these 
other modes can also be achieved with the 
same hardware and software used in NUE-
PSK. 

Modulation (PSK31 Encoding) 
The PSK31 modulation algorithm is quite 

straightforward and could even be imple-
mented on a conventional PIC-like device 
(one without a DSP core). This was done in 
several projects over the years within the QRP 
community; see, for example, the PSK31 
Beacon project from the NJQRP Club. 

Summary of the encoding steps: 
1) Varicode encoding of the input text 

character stream coming from the keyboard 
to create an optimized bit-representation of 
the text; 

2) BPSK serialization of the Varicode 
character to create the proper sequence of 
phase changes in the waveform based on the 
bits in the Varicode; 

3) Form the wave shape from the com-
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bination of phase changes coming from the 
serializer, being careful to reduce the power 
level to zero when the 90° phase changes 
occur, thus reducing the bandwidth of the 
transmitted PSK signal. 

These steps are all performed by a dsPIC 
processor, per the functional block diagram 
shown in Figure 1. As ASCII characters 
are produced by a keyboard, they are first 
converted to Varicode encoded characters 
using a lookup table. A string of binary 
bits, the length of which is variable (hence 
“Varicode”), is generated from the table. 
The strings of bits are then used to drive a 
differential phase state machine, which uses 
predefined tables to modulate the amplitude 
of the quadrature outputs (sine and cosine 
waveforms) of a numerically-controlled 
oscillator (NCO). The sine and cosine codes 
are derived from a lookup table to produce 
the NCO carrier. 

The two quadrature oscillator signals 
are multiplied by amplitude functions, as 
determined by the phase state machine, and 
the resulting channels of data are added to 
produce a digital version of either a BPSK 
or QPSK signal. Although a simpler scheme 
could be used for BPSK alone, this method 
has the advantage that it can also generate 
QPSK. This digital stream of data is then 
sent to a digital to analog converter (DAC) to 
produce an audio carrier with BPSK/QPSK 
modulation. The output of the DAC is sent 
to the transceiver audio input for conversion 
to RF. 

Demodulation (PSK Decoding) 
Whereas the encoding process described 

above is pretty straightforward, the PSK 
decoding algorithm is significantly more 
complex and computationally demanding. 
This may be why there have been so few 
homebrew standalone PSK demodulator 
projects in the ham community. The PC 
sound card is clearly the easiest way to pro-
vide the intense DSP processing needed for 
decoding PSK; hence PC-based PSK31 pro-
grams abound. 

This is where the stand-alone (PC-less) 
NUE-PSK project excels — it is able to inde-
pendently handle the complex PSK decoding 
algorithm in real time, thus providing the first 
truly portable digital modem for hobby use. 

Follow Figure 2, the PSK demodula-
tion block diagram, as we walk through the 
decoding steps. 

Summary of the decoding steps: 
1) Receiver audio is sampled at 8 kHz, 

creating a digital floating point representation 
of the audio stream. 

2) Data is fed into a 512 point Fast Fourier 
Transform (FFT) for display, tuning and 
visual signal monitoring purposes. 

3) The audio floating point data stream is 
converted to a baseband signal centered on 
the operating frequency. The NCO generates 
sine and cosine signals and multiplies them 
with the audio stream to produce I (in phase) 
and Q (quadrature phase) data streams. 

4) The I and Q data streams are decimated 
by 16 to reduce the sample rate to 16 times 
the signal BW. The final sampling rate then 
is 8000 / 16 = 500 Hz. [In digital-signal-pro-
cessing speak, to decimate a signal by some 
number, n, you keep every nth sample, throw-
ing away all of the other samples.—Ed.]

5) A 65-tap “matched bit” finite impulse 
response (FIR) filter is applied to produce 
a magnitude response for best signal to 
noise ratio (SNR) for data extraction, and 
to minimize inter-symbol interference (ISI) 
presented in the signal path and in the receive 
filter. 

6) AFC is performed to lock on the 
incoming signal frequency by using another 
FIR with BW = 31.25 Hz. 

7) AGC is accomplished by computing 
the average signal magnitude from the I and 
Q data streams. Infinite impulse response 
(IIR) filters are selected to provide either 
slow decay or fast attack settings. 

8) Frequency error detection is done by 
scanning the FFT data within the capture 
range while looking for the nearest peak. 
Also, a wide range AFC algorithm is per-

formed by calculating the slope and moving 
the NCO to place the peak at the center. 

9) Symbol synchronization is done by 
finding the center of each symbol in order 
to sample at the optimum time. There are 16 
samples per symbol at 500 Hz intervals, so 
each sample energy is IIR-filtered and stored 
in an array. The array elements with the most 
energy are selected as the center of the data 
symbol at each symbol period of 32 ms. 

10) Squelching is done by taking the his-
togram of incoming signals and considering 
the spread (difference angle, or arctangent 
of Q / I between each sample) around 0° 
and 180° as a measure of signal quality. The 
narrower the spread, the stronger and more 
coherent the signal. 

11) Symbol decoding is the last step, 
whereby we convert the I and Q signals back 
to two possible symbols by using the differ-
ence angle (<90° = 1, >90° = 0). The resul-
tant symbols are shifted into a register until 
the inter-character mark (2 or more zeros) is 
found. The shift register is then used as an 
index into a reverse Varicode table containing 
the originally transmitted characters. 

These eleven algorithm steps can be fol-
lowed in the block diagram of the demodula-
tion process.

The Path to a Design
After operating with the limitations of 

using a laptop in the field, we decided that 
we wanted a PSK station that did not require 
the use of a PC in any form. We wanted 
something that would be very portable and 
compatible with QRP operations, providing 
many hours of operation from batteries. The 
project described in this article is a result 
of this desire — but it took a little time for 
advancing technology to pave the road. 

The initial efforts to develop a “portable 
PSK” controller began about eight years ago 
with a reproduction of the original G3PLX 
approach described in RadCom, but with a 
more current DSP card providing the horse-

Figure 1 — PSK modulation block diagram.
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Table 1
NUE-PSK Digital Modem Parts List 

Designator	 QTY	 Description	 Source	 P/N 
C1, C2, C3, C7, C9, C11
C13, C17, C18, C19, C21
C22, C23, C24, C25	 15	 Capacitor, 0.1 µF, 1206 SMT	 Digi-Key	 PCC1883CT-ND 
C4, C5, C9, C10, C12, C17	 6	 Capacitor, 1 µF, 16 V, SMT	 Digi-Key	 PCE3045CT-ND 
C6	 1	 Capacitor, 10 µF, 25 V, SMT	 Digi-Key	 PCE3118TR-ND 
C15, C16	 2	 Capacitor, 20 pF, 1206 SMT	 Digi-Key	 311-1153-1-ND 
D1, D2, D3	 0	 Diode, Schottky 1N5817, DO-41	 Digi-Key	 1N5817DICT-ND 
D4, D5	 2	 Diode, Schottky MA2SE01, SMT	 Digi-Key	 MA2SE0100LCT-ND 
ENC-1	 1	 Rotary encoder	 Mouser	 688-EC12E2420802 
J1	 1	 Coaxial dc power connector, 2.1 mm	 Mouser	 163-5004-E 
J2	 1	 6-pin Mini-DIN	 Mouser	 161-2206 
J3	 1	 8-pin Mini-DIN	 Mouser	 161-2208 
J4	 1	 Pinheader, female, 1 × 2	 Mouser	 517-870-01-03 
J5	 1	 IC socket, 16-pin DIP	 Mouser	 575-199316 
J6, J7	 2	 9 V battery clip	 All Electronics	 BST-3 
LCD	 1	 LCD, CFAG12864, 128 x 64, graphics	 Crystalfontz	 CFAG12864BTFHV 
P1	 1	 Pinheader, 1 × 2, 0.1”	 Mouser	 517-834-01-36
P3	 1	 Pinheader, 2 × 3, 0.1”	 Mouser	 517-834-01-36
P4	 1	 Pinheader, 1 × 4, 90°	 Mouser	 517-5111TG
P5	 1	 Pinheader, 1 × 2, 0.1”, 90°	 Mouser	 517-5111TG
P8	 1	 8-pin Mini-DIN plug	 Mouser	 171-2608 
PB1	 1	 Pushbutton, DPST, momentary	 New ark	 19C6398 
PB1-cap	 1	 Pushbutton cap	 New ark	 18M6492 
Piezo	 1	 Piezo buzzer	 Digi-Key	 433-1023-ND 
Q1, Q2, Q3	 3	 Transistor, NFET, 2N7000	 Digi-Key	 497-3110-ND 
R1, R2, R9, R12	 4	 Resistor, 1 kΩ, 1206 SMT	 Digi-Key	 RHM1.00KFCT-ND 
R4	 1	 Resistor, 10 kΩ, 1206 SMT, 1%	 Mouser	 71-CRCW1206-10K 
R7, R8, R10, R11	 4	 Resistor, 10 kΩ, 1206 SMT	 Digi-Key	 311-10KECT-ND 
R13	 1	 Mini-potentiometer, 1 kΩ	 Mouser	 317-2080F-1K 
R3	 1	 Resistor, 47 Ω,1/2 W axial	 Mouser	 293-47-RC 
R14	 1	 Trim pot, 10 kΩ	 Mouser	 652-3306W-1-103 
R15, R16	 2	 Resistor, 6.8 kΩ, 1206 SMT	 Digi-Key	 311-6.8KECT-ND
R5	 1	 Resistor, 2.0 kΩ, 1206 SMT, 1%	 Mouser	 71-CRCW1206-2K 
S1	 1	 Switch, SPDT, slide, PCB mount, 90°	 Digi-Key	 EG1917-ND 
SH-1	 1	 Pinheader, 1 × 2 shunt	 Mouser	 517-951-00 
U1	 1	 IC, Microchip DSC, 64-pin QFP,
		  dsPIC33FJ128MC706	 Mouser	 579-33FJ128MC706IPT 
U2, U3	 2	 IC, Octal Level Shifting Buffer,
		  TXB0108 (TSSOP-20)	 Mouser	 595-TB0108PWR 
U4	 1	 IC, Microchip EEPROM, 24AA256 (8SOIC)	 Digi-Key	 24AA256-I/SN-ND 
U5	 1	 IC, Freescale microcontroller,
		  MC68HC908QY4, 16-DIP	 Digi-Key	 MC68HC908QY4VPE-ND 
U6	 1	 IC, Dual-DAC, MCP4922, 14SOIC	 Digi-Key	 MCP4922-E/SL-ND 
U7	 1	 IC, Programmable Gain Amplifier,
		  MCP6S21, 8SOIC	 Digi-Key	 MCP6S21-I/SN-ND 
U8	 1	 IC, Op Amp, MCP601, 8SOIC	 Digi-Key	 MCP601-I/SN-ND 
U9	 1	 Voltage regulator, 5 V switching,
		  PT78ST105H, 5 V	 Digi-Key	 PT78ST105H-ND 
U10	 1	 Voltage regulator, 3.3 V, LP2950 (TO-92)	 Digi-Key	 LP2950CZ-3.3-ND 
X1	 1	 Crystal, 10 MHz, 20 pF (FOXSLF/100-20)	 Digi-Key	 631-1101-ND 
W1	 1	 Flex cable assembly, 1 × 20	 Newark	 FSN-21A-20
	 1	 Cable assembly, 3-wire (battery clips)
Hardware		
	 8	 Machine screw, pan slotted, #2-56 × 0.25”	 Mouser	 5721-440-1/4-SS 
	 8	 Machine screw, pan slotted, #4-40 × 0.25”	 Mouser	 5721-256-1/4-SS 
	 4	 Spacer, hex tapped, #2, 0.375” (LCD)
	 4	 Spacer, nylon, hex tapped,
		  4-40 × 0.25” (PCB)	 Mouser	 561-L4.25 
	 1	 Knob	 Mouser	 506-PKG50B1/4

power for the PSK31 engine. The design also 
included a novel Morse user interface and 
tight coupling to the PSK-20 transceiver. The 
project was documented in the QRP litera-
ture and was presented at ham conferences, 
but ultimately it was too complex and fragile 
for wide-scale use.4 See Figure 3.

The next approach we considered was 

based on the use of low power DDS (direct 
digital synthesis) chips for generating audio 
tones with the proper phase modulation. A 
multiplying DAC was used for modulating 
and shaping the amplitude of the tones, and 
a microcontroller was used to demodulate 
the PSK and display the resulting characters. 
Analog filters were used for filtering the 

PSK signal ahead of digital processing in the 
microcontroller. The analog filters, however, 
proved to be too bulky and difficult to design 
when trying to use standard-value compo-
nents. Such filters also cannot provide the 
same level of performance as can be obtained 
with digital filters. Eventually this approach 
was also abandoned. 



6   QEX – Mar/Apr  2008

Figure 2 — PSK demodulation block diagram.

Success At Last 
The approach that ultimately proved 

workable in every regard was one in which 
all processing is accomplished within a 
single microcontroller — one that is capable 
of performing the digital signal processing 
“number crunching” as well as handling all 
control chores. The newly-released dsPIC33 
microcontroller from Microchip is a delight-
fully powerful combination of a conventional 
control processor with a DSP core for intense 
digital signal processing.5 Available in a 
small package with lots of I/O for control-
ling peripherals, this was just what the doctor 
ordered. 

It was perhaps fortuitous that others in 
our QRP clubs were having similar fantasies 
at about the same time. K5JHF was explor-
ing the dsPIC chip family and decided they 
would make a good basis for a number of 
projects of interest to the group. He kick-
started things with the design of a dsPIC33 
project board, including such peripherals 
as a programmable gain amplifier (PGA), 
digital to analog converter (DAC), EEPROM 
memory, liquid crystal display (LCD), a 
quadrature rotary encoder and interfaces 

for a programmer and a keyboard. This was 
enough to give birth to what we now call the 
NUE-PSK digital modem. 

NUE-PSK Hardware Overview 
As illustrated in the schematic diagram 

of Figure 4, U1 — a dsPIC33F is at the heart 
of the project design. This highly-integrated 

Figure 3 — We built this portable PSK 
unit around 2000. It was too complex and 

expensive, with separate boards for DSP and 
control processing. It did include a novel CW 

user interface.

dsPIC33F device employs a powerful 16-bit 
architecture that seamlessly integrates the 
control features of a Microcontroller (MCU) 
with the computational capabilities of a DSP 
IC. The resulting functionality is ideal for 
applications that rely on high-speed, repeti-
tive computations, as well as control — just 
perfect for our PSK31 digital modem proj-
ect! Table 1 is the complete parts list for the 
NUE-PSK modem.

The dsPIC33F central processing unit 
(CPU) has extensive mathematical process-
ing capability with its DSP engine, dual 
40-bit accumulators, hardware support for 
division operations, barrel shifter, 17 × 17 
multiplier, large array of 16-bit working reg-
isters and a wide variety of data addressing 
modes. Flexible and deterministic interrupt 
handling, coupled with a powerful array of 
peripherals, renders the dsPIC33F devices 
suitable for control applications. Reliable, 
field programmable flash program memory 
ensures scalability of applications that use 
the dsPIC33F family of devices. The specific 
device we used contains 128 KB of program 
flash memory, 16 KB of RAM, nine 16-bit 
timers, 16 general-purpose I/O pins, a pulse 
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width modulation port, a port designed for 
reading quadrature encoders, two 16-channel 
ADCs, two UARTS, two SPI ports, two I2C 
ports, and comes in a 64-pin quad surface 
mount flat pack package. Whew, this sure is 
a powerful chip. 

The initial prototype used the dsPIC to 
capture and decode signals from the PS2 
Keyboard. This worked fine, except that on 
rare occasions, the dsPIC appeared to reset 
itself. This had the unfortunate effect of los-
ing current operating information such as the 
frequency, call sign, and other. After reviewing 
all information regarding the PS2 keyboard, 
we didn’t like the way we were capturing 
scan codes from the keyboard. Data was being 
sent synchronously from the keyboard to the 
dsPIC, using a clock of only roughly known 
frequency (~10-20 kHz). Each clock pulse 
caused an interrupt in the dsPIC, which then 
sampled the data stream. With the keyboard 
protocol, selected by IBM many years ago, 
each scan code is sent using 11 clock pulses. 
In addition, each keystroke press and release 
results in three or more scan codes being gen-
erated. Consequently, each keystroke gener-
ated a minimum of 33 interrupts. 

Apparently too much time was being 
wasted just processing keyboard interrupts, 
and that was the likely cause for the occa-
sional dsPIC resets. To solve this problem, 
we decided to use another small microcon-
troller to do most of the work handling the 
keyboard data. This second microcontroller, 
U5 (Freescale 68MC908QY4) simply 
responds to the clock from the keyboard 
and gathers the bits received into a complete 
scan code (11 interrupts). Once a scan code 
is completed, the ‘QY4 generates a strobe 
pulse to the dsPIC. Again, an interrupt in the 
dsPIC causes the dsPIC to capture an entire 
scan code on a set of port pins, and place it 
in a buffer, or merely sets a flag if the scan 
code is not a usable character. The ultimate 
effect of this division of responsibilities is 
that the dsPIC now responds to only 1/11th of 
the number of keyboard interrupts that were 
present in the first attempt. 

Two LCD displays were initially chosen 
for the PSK interface. A character LCD was 
used for displaying received decoded text and 
as a monitor for text being placed in the trans-
mit queue. Text is displayed when in transmit 
and as macros are being played back. The 
cursor changed from steady to flashing when 
in transmit. Setup Menus were also displayed 
on the text display. A 144 × 32 pixel graph-
ics LCD was then used to display the FFT-
generated spectrum of the audio passband. 
The lowest six rows of the display were used 
for the tuning cursor. Since a 512-point FFT 
is used with an 8 kHz sampling rate, we have 
256 points for a 4 kHz passband. We chose 
to display only the frequency range from 
500 Hz to 2500 Hz, using 128 columns of 
the display. (The last 16 of the 144 horizontal 
pixels in each row were not used.) The data 
and control lines for each display were buff-

ered by level translators U2 and U3, required 
to match the voltage levels between the 3.3 V 
dsPIC and the 5 V displays. 

Since our original prototypes were built, 
we decided that we could possibly save some 
cost and simplify packaging by using a single 
graphics display for both text and spectral 
display. A 128 × 64 pixel display was chosen. 
The display drivers were combined into one, 
and modified to handle display of text buf-
fers and an FFT of the input signal (spectral 
display), along with a “cursor” for tuning. 
Text is displayed on the bottom half of the 
display, using 5 × 8 pixel characters with  
4 lines of display. The top 32 pixels are used 
for the spectral display, and the tuning cursor. 
In addition, the display incorporates a back-
light that can be turned on or off by means 
of either a hot key or from a menu selection. 
FET transistor Q2 buffers the control line 
going to the backlight pin on the LCD. 

The EEPROM, U4 (24AA256), provides 
local storage for the macro and user-set vari-
ables entered during modem operation. This 
memory device is controlled by one of the 
I2C ports on the dsPIC. 

A computer-adjustable gain stage, the pro-
grammable gain amplifier (U7, MCP6S21), 
brings the low level audio input stream com-
ing from the SSB receiver to the analog-to-
digital converter on the MCU. Amplifier U8 
(MCP601) presents precisely one-half the 
Vdd voltage to the ac reference input of U7. 

Processed digital transmit audio tones are 
converted to a continuous analog stream by 
D-to-A converter U6 (MCP4922). The audio 
level control R4 sets the appropriate modula-
tion level to the input of the SSB transmitter, 
which is generally a one-time setting for the 
transmitter being used. To produce a bipolar 
ac signal, a numeric constant equal to one 

  Buying or Building Your Own NUE-PSK

Assembled and tested NUE-PSK modems can be purchased from the 
American QRP Club at www.amqrp.org/kits/nue-psk31/. The cost is $199 for US 
and Canadian shipment; $219 for overseas orders. Accessories are also available. 
You can order online, or send a check or money order payable to the American 
QRP Club c/o George Heron, 2419 Feather Mae Ct, Forest Hill, MD 21050. Full 
and partial kit versions will be available later this year. Check the American QRP 
Club Web page for the latest updates.

If you prefer to source your own parts and build from scratch, see Figure 1. The 
NUE-PSK software is available for free downloading on the NUE-PSK Web page.

Whether you decide to homebrew the modem, or perhaps get the partial kit 
and assemble it yourself, don’t be afraid of soldering the surface mount ICs used 
in this project. Here’s a technique that works great even for the 64-pin dsPIC chip. 
Using a magnifying lamp, position the IC on the pads and tack solder two corner 
leads to hold the package in place. Liberally solder all the leads to the pads without 
any concern for shorts between the leads. Next, use some desoldering braid (like 
SolderWick) to remove all excess solder along the rows of leads. Don’t worry about 
overheating the IC package — it’s tough. After all that excess solder is sucked up, 
you’re left with the cleanest looking connections that could ever be achieved by 
hand soldering!
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Figure 4 — The NUE-PSK schematic diagram.
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half of the full scale output is added to the 
data stream generated by the dsPIC. Since 
the output is capacitively coupled, the dc 
term represented by the half scale constant is 
removed. The full analog signal is presented 
to the audio level control, however, and one 
of the dsPIC ADC inputs is used to mea-
sure the dc voltage on the wiper of the level 
control. This allows the dsPIC to determine 
the position of the wiper and display that 
information on the LCD, as desired (a menu 
option). This facilitates setup with different 
rigs, once the correct setting is determined 
for each rig. The wiper of the control is ac 
coupled to the rig audio input. 

FET transistor Q1 (2N7000) buffers the 
push-to-talk (PTT) control line sent to the 
transceiver, used to put the radio into trans-
mit mode. 

A piezo buzzer is provided to deliver 
audible feedback for Tuning, menu selection 
and for future features. FET transistor Q3 
buffers the control line to the buzzer. 

The audio input, output and PTT control 
lines are brought off the pc board using an 
8-pin mini-DIN connector, J3. This approach 
minimizes the number of connectors and 
cables normally used to connect a digital 
mode controller to an HF rig, as sometimes 
these cables can get mixed up and messy 
at the operating station. Further, when the 
NUE-PSK modem is used with a dedicated 
HF rig – say a Yaesu FT-817/857/897 or a 

Figure 5 — The two-LCD Prototype used 
a graphic LCD for the spectrum display 

(top) and a character LCD for receive and 
transmit text characters (bottom). 

Figure 6 — The newer single graphic LCD 
shows both spectrum and receive or 

transmit characters. The backlight affords 
great night time visibility and costs only 

20 mA in additional current demand. 

Figure 7 — Power requirements for the NUE-PSK modem. Measurements illustrate the 
dramatic benefits of using the switching “buck” regulator. Regulator efficiency increases as 
higher supply voltages are used. The top curves show the input current requirement when 

running with the display backlight on, while the lower curve shows 15 mA less current when 
the backlight is off.

Figure 8 — The two 9 V alkaline batteries nestle tightly against the circuit board in the case 
compartment. When installed, the screw-on cover holds them firmly in place.

PSK-20 transceiver card — the other end of 
the cable may also be consolidated to a single 
multi-pin plug, providing a neat and elegant 
interconnect with the radio. 

For the design of the power supply, we 
chose to use a switching regulator (U9) 
instead of the more conventional 7805 linear 
regulator to get 5 V on the board. This solu-
tion requires a lower operating current from 
the supply because of the greater efficiency 

achieved by the switching “buck” regulator. 
A linear regulator merely dissipates the power 
difference between input and output in the 
form of heat. Thus, even though the dsPIC 
draws approximately 100 mA, the modem 
now only requires about 60 mA from the 
supply during normal operation, and portable 
power is easily provided by conventional 
alkaline batteries. Figure 7 shows the current 
requirement as a function of supply voltage. 
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A small drawback of using the switch-
ing regulator is that a 9 V minimum input is 
required to maintain regulation; so battery 
operation is achieved by using two standard 
9 V batteries in series to provide a nominal 
18 V input to the modem. See Figure 8. 
Of course the digital modem may instead 
be externally powered by applying 12 V 
through J1. When external power is applied, 
the internal battery connector should be 
disconnected, or the batteries should be 
removed. 

The NUE-PSK project is assembled 
using a single 4 × 5 inch pc board — quite 
an improvement over the Portable PSK 
projects done previously, as well as over the 
prototype hardware for this current design. 
The pc board holds all components — the 
LCD, rotary encoder, power connector and 
radio interface connectors — and may be 
assembled into your favorite homebrewed 
enclosure, or in the clam shell aluminum 
enclosure made available when the kit is pur-
chased from the American QRP club.6 This 
enclosure also has a conveniently-accessed 
compartment on the back side that houses 
the 9 V batteries. See Figure 9.

Hardware Evolution 
Before ending up with a neat and compact 

circuit board, the NUE-PSK design started 
out as a rather large and sprawling prototype 
hardware layout. This is normally the case 
with complex projects, because it allows the 
designers to try out different approaches and 
components, while also allowing them to 
easily monitor and debug the design. 

The prototype design was built using a 
proto-board purchased at Fry’s Electronics. 
It has plated-through holes on 0.1 inch 
centers to facilitate mounting through-hole 
components. The surface mount dsPIC 
microcontroller is mounted on a “Schmart-
Board,” also obtained from Fry’s.7 This 
particular board is designed to permit attach-
ing 32 to 100 pin SMT devices, and has 
0.65 mm lead separation (pitch). Schmart 
Boards are available in several pitches and 
pin count configurations to accommodate 
prototyping of a range of SMT controllers. 
Header pins and sockets are used to connect 
the board to the main prototype board. Point-
to-point circuit connections were accom-
plished using 30-gauge Kynar wire, and a 
hand-stripping tool was used to strip the 
ends prior to soldering to the socket/connec-
tor pins. Thus the prototype was rather easily 
assembled and the result was relatively solid 
when complete. 

Development Tools and Getting 
Started in Software 

While Microchip is well-known in the 
ham community, few of us had experi-
ence using this new family of PIC chips. 

Microchip apparently foresaw this situation 
and they have provided an amazing number 
of application notes, specifications and guid-
ance for designers to use in quickly coming 
up to speed. 

Further, even the best chip on earth would 
be crippled without a good set of software 
development tools; but Microchip again 
came to the rescue with a C compiler and an 
extensive DSP library that proved invaluable 
to us in developing the project. Both of these 
were available for free, so what more could 
we ask! 

To program the dsPIC, we discovered that 
the inexpensive (~$25) PICkit2 program-
mer from Microchip is entirely adequate for 
the job. In-circuit debugging is not readily 
achieved with the free versions of the tools, 
but we seemed to do alright regardless. 

The final essential aspect in enabling 
this project was a design reference for the 
PSK31 modem algorithm, provided by Moe 
Wheatley, AE4JY. His PSKcore documenta-
tion and C++ source code was professionally 
done and placed into the public domain, so it 
was available for our use.8 We concluded that 
it would be a straightforward conversion to C 
language so we could use our free compiler 
and have it work on the dsPIC33, and we 
relied heavily on it. 

Software Overview 
Although Wheatley’s code was writ-

ten in C++, and was developed for use on 
a PC, it was not too difficult to convert it 
for compilation under C, for which there is 
a free compiler from Microchip. As part of 
our QRP group project, John Fisher, K5JHF, 
provided much of the initial software for the 
project. His code includes most of the ini-
tialization code, a keyboard handler, a basic 
LCD driver, I2C and SPI drivers, an interface 
for EEPROM storage, and ADC and DAC 
interfaces. Milt, W8NUE, developed the 
remaining code fairly easily, even though his 

programming experience has been mostly 
in BASIC and Visual Basic, with some 
FORTRAN. 

PSK31 Decoder Processing 
The receiver audio from an SSB trans-

ceiver is supplied to the NUE-PSK circuits. 
Before processing by the dsPIC, it is passed 
to the PGA, whose gain is controlled by the 
dsPIC via a serial peripheral interface (SPI) 
connection. The output of the PGA is then 
sampled by an internal 12-bit ADC on the 
dsPIC. 

Timer 1 of the dsPIC provides all of the 
critical timing. The timer is set for interrupts 
every 125 microseconds, corresponding to a 
sample rate of 8000 samples per second. In 
receive (demodulation), ADC samples are 
captured into a 2048 word buffer. Once the 
buffer is half full, a flag is set to inform the sys-
tem that data is available for processing. Only 
half of the buffer is processed at a time. This 
ping-pong buffering technique allows continu-
ous data processing to be accomplished while 
the other half is being filled in real time. 

The “main” routine of the program is an 
endless loop in which a number of flags are 
tested and, if found to be set when queried, 
they are used to trigger execution of various 
functions. For example, if the ProcPSK flag 
is checked and found to be set, a block of data 
is then processed. Each sample in the buffer is 
multiplied by a quadrature NCO, producing 
I and Q signals. Each of these is then passed 
two times through 35-tap decimate-by-4 FIR 
filters. This provides I and Q signals that are 
now sampled at 500 samples per second. (If 
in PSK63 mode, the second filter bank will 
decimate-by-2, providing 1000 samples per 
second.) While the block of 1024 samples is 
being processed, the second half of the buf-
fer is being filled with new samples under 
control of the Timer 1 interrupts. Processing 
then ping-pongs between the two halves of 
the buffer. Using this technique we never 

Figure 9 — This photo shows the NUE-PSK assembly. A 4 × 5 inch circuit board fits neatly into 
the enclosure, holding all components. (Individual wires are shown connecting the display in 
this prototype unit.) The battery “door” in the back of the case is visible along the left edge of 

the photo. Two 9 V batteries fit into the space between the circuit board and the case.
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write new data to the part of the buffer that is 
being processed. 

The next step is to split each of the I and 
Q channels into two paths. One is for the 
processing of the bits and one path is for 
processing of frequency data, producing 
four channels of data. Each of these channels 
is filtered by a 65-tap FIR. The I and Q bit 
channels should be optimized to minimize 
intersymbol interference, while the I and Q 
frequency channels should be optimized for 
fast response of the automatic frequency con-
trol (AFC) loop. All of the FIR filters have 
responses as specified by AE4JY. Instead 
of using the PSKcore filtering code, we are 
using FIR filters from the Microchip DSP 
library, as these software filters are designed 
to take into account the special hardware fea-
tures of the dsPIC. The results can be shown 
to be the same, however. That is, they have 
identical frequency responses. 

The bit channels are processed as 
described in the PSKcore specification to 
determine the proper time for determina-
tion of the phase changes that are employed  
in PSK. Since the bit rate of PSK31 is  
31.25 Hz, each bit extends for 32 milli-
seconds in time. We have a sample rate of 
500 Hz at this stage of processing, so there 
are 16 samples for each bit. The point in 
time for proper synchronization of the phase 
detection process is based on an analysis of 
the average energy in each of the 16 samples 
when averaged over several bits. Without 
going into the mathematical details, suffice 
it to say that the maximum energy always 
occurs at the boundary between successive 
bits. This fact is used to establish synchroni-
zation in the bit detector. 

We used the free WinFIRDesigner 
software, with parameters obtained from 
the AE4JY code to calculate the FIR filter 

Figure 10 — NUE-PSK Prototype System. Clockwise from upper 
right: NUE-PSK displays and prototype hardware, standard PS2 

keyboard, FT-817 transceiver, and power supply. 

Figure 11 — This close-up of the NUE-PSK prototype shows the 
multiple cabling and programmer connection (lower right), which allows 

convenient access to the electronics during design shake down. 

coefficients. As noted above, the frequency 
responses obtained with these coefficients 
are identical to those published by AE4JY. 

A processing block takes the four filtered 
signals, and proceeds to: 

1) obtain a digital AGC control; 
2) calculate frequency errors; 
3) correct the numerically controlled 

local oscillator; 
4) determine bit boundaries; 
5) determine whether a 1 or a 0 is being 

received; 
6) collect the decoded 1s and 0s into a 

Varicode pattern; 
7) convert the Varicode pattern into 

ASCII characters; and finally 
8) display the resulting characters. 
The PSKcore routines were used to per-

form AGC, bit synchronization, character 
decoding, and so on. In addition, we added 
code that will perform a 512 point FFT on 
the samples (8 kHz sampling rate) that are 
provided to the FIR filters. The processed 
FFT is then converted to magnitude, and 
then to a logarithmic scale. The 500-to- 
2500 Hz portion of the spectrum is displayed 
on the upper half of a 128 × 64 pixel graph-
ics LCD. This display is essential for tuning. 
More about this later. 

The final demodulator processing output 
is a decoded ASCII character. These decoded 
characters are displayed on the lower half of 
the 128 × 64 graphics display, as four lines 
of 20 characters each. The display driver 
includes a line buffer so that once a line of 
characters is filled, it is scrolled up and new 
characters are inserted at the beginning of the 
second line. This approach was chosen so 
that printed characters remain fixed for easy 
reading, as opposed to all characters being in 
constant motion (scrolled horizontally) once 
a line is filled. 

PSK31 Encoder Processing 
As mentioned earlier, the encoding pro-

cess is considerably less-intense as compared 
to the decoder operations. ASCII characters 
are accepted from the keyboard, converted 
to Varicode characters, and the binary string 
represented by the Varicode is used to modu-
late the phase and amplitude of an audio car-
rier — the PSK audio signal. 

Although PSKcore code creates a block 
of data to be sent to the PC soundcard, we 
chose to generate a single sample of output 
signal for each and every 125 microsecond 
timer interrupt. This minimizes data memory 
requirements. The method of generating the 
desired phase and amplitude modulation is 
that developed by AE4JY with the exception 
that the tables used reside in program mem-
ory instead of data memory. The use of these 
tables eliminates the time-consuming calcu-
lation of sine and cosine signal components. 
The choice of placing these tables in program 
memory was made because we had plenty of 
program memory with the dsPIC, but not a 
lot of spare data memory. The calculated data 
samples are then scaled for output to a 12-bit 
DAC. The DAC output, after capacitive cou-
pling, is then routed to the audio input of an 
SSB transceiver. 

As each interrupt occurs, the code steps 
through the tables, providing modulation val-
ues for the I and Q signals, resulting in either 
BPSK or QPSK modulation. The modulated 
I and Q signals are added together prior to 
the DAC. 

Using the NUE-PSK Digital Modem 
Install two standard 9 V alkaline batteries 

in the battery compartment, or connect a 9 to 
18 V dc supply to the coaxial power connec-
tor (2.1 mm) on the right end of the modem. 
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of the peaks on the display. Don’t worry if it 
is not exactly aligned. Once close to the peak, 
stop turning the encoder. The modem now 
attempts to “lock” onto the signal and fine-
tune the frequency if needed. If the modem 
is able to lock onto a PSK signal, it will very 
shortly begin decoding the signal, and then 
display characters on the screen. The time 
it takes for decoded characters to appear 
depends on the ability of the modem to esti-
mate the center frequency of the incoming 
signal, and the signal to noise ratio. Tuning 
can also be done with the arrow keys on 
the keyboard. The right and left arrow keys 
provide finer tuning, while the up and down 
arrow keys provide faster tuning. The tuning 
rate of the encoder on the modem can also be 
selected from a menu setting. Note: When 
tuning in receive mode, the spectral display is 
frozen—this is intentional. 

Now, on to set-up for transmission. 
Connect your rig to a dummy load. 

Since PSK signals generated by the 
modem contain simultaneous multiple fre-
quencies (over a very narrow bandwidth), it 
is imperative that the audio output from the 
modem not overdrive the input to the rig, 
or very poor signal quality will result. To 
facilitate setting the audio drive to the rig, a 
potentiometer on the modem may be used 
to adjust the level. In addition, the modem 
includes provision for “measuring” the posi-
tion of the potentiometer, so that it can be 

Signal Connections 
Install a connector, or connectors, to the 

end of the cable that has an 8-pin mini-DIN 
connector. Most modern HF rigs have a 
mini-DIN Data or AUX connector, which 
provides for PTT, fixed level audio from the 
receiver (independent of the volume control 
on the rig), and a line-level (approx 100 mV 
RMS) audio input to the transmitter. On the 
Yaesu FT-817/857/897 this connector is a 
6-pin mini-DIN. On many Kenwood HF rigs 
there are 6-pin and 13 pin mini-DIN con-
nectors that may be used. See Figure 12 for 
wiring details. 

Keyboard 
The modem requires an AT/PS2 style key-

board for character entry. The keyboard also 
provides for entry and playback of macros. 
Use the 6-pin mini-DIN connector on the end 
of the modem to connect to the keyboard. 

Operation 
Once you have the cable between the 

modem and the rig connected, keyboard 
attached, and power available, you are ready 
to operate PSK. But first, some additional 
setup may also be desired, as described next. 

Turn on the modem. If the cable between 
the rig and modem is wired correctly, you 
should see evidence of signals and/or noise 
on the top half of the display (the spectrum 
area). Tune your rig to one of the PSK 
sub-bands. These are typically 70 to 74 
kHz above the lower band edge on 40 and 
20 meters. If there is PSK activity on the 
band, you should see peaks on the graphic 
display. The horizontal location of the peaks 
corresponds to the audio frequency of each 
signal relative to the tuned frequency of 
the rig. For example, if the rig is tuned to 
14070 kHz, the display shows audio frequen-
cies from 500 Hz to 2500 Hz, or actual RF 
frequencies from 14070.5 to 14072.5 kHz. 

Now for the fun — tuning! Turn the 
encoder clockwise, or counterclockwise, to 
move the cursor to a higher, or lower fre-
quency. (The cursor is the small triangular 
icon just below the spectrum display.) The 
audio frequency is displayed when turning 
the encoder. Try to align the cursor with one 

easily reset to the same setting in the future. 
More on this later. 

We have found that the best way to set up 
for PSK operation is to initially set the trans-
ceiver for normal SSB operation, including 
whatever power setting you usually employ. 
For example, if you have a 100 W PEP rig, 
set it up for 100 W on SSB. 

Switch to Digital mode (if your rig pro-
vides that option, otherwise retain the SSB 
mode). 

Then press F8 on the keyboard. This 
places the modem in the TUNE state, which 
is denoted by “TUNE” at the top left of the 
display. The modem is now generating a con-
tinuous tone, which is fed to the audio input 
of the rig. The PTT signal from the modem 
should also cause the transceiver to switch to 
transmit. At this point, the potentiometer on 
the modem (just to the right of the display) can 
be adjusted to set the power level of the trans-
ceiver. A transmit power of 15 to 40% of the 
rig’s rated power is recommended. (In other 
words, 15 to 40 W with a 100 W rig). Keeping 
the power at this level does two things. First, it 
minimizes distortion due to clipping. Second, 
it avoids excessive heating in the rig finals, 
since PSK is a 100% duty cycle mode. A 
power meter is very handy for making this 
setting. Once the potentiometer has been set, 
press F8 again to return to receive mode. 

You should now be ready for transmit-
ting PSK. 

Pressing F12 will place the modem in 
transmit mode, but with a PSK idle tone 
being generated (unlike the CW tone in 
TUNE). If you are ready to give it a try, press 
F12. At this point, anything that you type on 
the keyboard will be converted into Varicode 
characters and transmitted using PSK modu-
lation. Pressing F12 again, will toggle back to 
receive. When in transmit mode, “TX” will 
appear at the top left of the display. 

Macros 
If you want to set up macros (pre-

recorded strings of characters for subsequent 
playback) before proceeding, now is a good 
time to do it. 

For those already familiar with PSK oper-
ations, macro setup is very similar to many of 

Figure 13 — A USB-to-TTL interface adapter 
from SparkFun will allow your computer 
USB port to connect to the modem for 
programming updates to the software.

Figure 12 — Connections between NUE-PSK digital modem and a typical HF transceiver. (The wiring diagram shows the connections for a 
Yaesu FT-817 radio.) 
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Figure 14 — This schematic diagram shows an easy-to-build RS-232 interface that you can 
use between your computer serial port and the serial TTL input on the NUE-PSK modem.

the popular PSK programs. There are a few 
differences though. Some of the typing will 
be “blind” — not all of the input characters 
will be echoed to the display. 

Before you begin to operate, you should 
record your call sign in the modem’s 
EEPROM. While in receive mode, type your 
call sign and then press Ctrl+M.

Macro recording is initiated by pressing 
Ctrl plus the function key that you want to 
be associated with your macro. For example, 
to use F1 for calling CQ, press Ctrl + F1. 
Then begin typing “ cq cq cq de.” Now enter 
Alt+M, press the space bar, enter Alt+M 
again, press the space bar again, enter Alt+M 
again, press the space bar, enter “K” and 
finally enter Ctrl+Q. (Omit the quotes during 
the typing). Now press F9 to store the macro. 
When this macro is played during transmis-
sion, by pressing function key F1, it will call 
CQ three times followed by your call sign 3 
times, followed by “K,” and then the modem 
will revert to receive. In this procedure, enter-
ing Alt+M informs the modem that you want 
to insert your call sign into the transmit buf-
fer. Entering Ctrl+Q, inserts a special char-
acter, which the modem recognizes as “quit 
transmitting and revert to receive.” Each 
macro can contain up to 255 characters. 

You can also record the “other sta-
tion’s” call sign in RAM (not in nonvolatile 
EEPROM) by pressing Ctrl+T after first typ-
ing their call sign on the keyboard. To insert 
the other station’s call sign into a macro, 
simply use Alt+T in the macro. Then, when 
you play the macro, the other station’s call 
sign will be inserted into the macro. This 
way, whenever you enter a new call sign 
using Ctrl+T, you do not need to re-record 
the macro to use the new call sign. 

Menus 
Configuration of the modem is done 

through a menu system. For example, you 
can select between PSK, QPSK, and QPSK 
reversed. You can also change the software 
squelch setting, the gain of the programmable 
gain amplifier (PGA), turn CW Identification 
on or off, turn the display backlight on or 
off, change the tuning “increment,” monitor 
battery voltage, or monitor the setting of the 
TX audio potentiometer. Other items may be 
added to the menu at a later time. 

The menu system has two means of 
access. If you wish to access the menus using 
the keyboard, simply press F10 on the key-
board. Next enter a number on the keyboard 
corresponding to the submenu that you wish 
to access. Once this selection is made, choices 
for the submenu will be displayed. Another 
numeric entry will denote your selection. 
With the keyboard menu system, entering the 
submenu choice on the keyboard will cause an 
exit from the configuration menu. 

The second method of menu access is 

through the “Select” button on the menu and 
the rotary encoder. Pressing and holding the 
Select button for more than ½ second will 
activate the menu system. When initially 
activated, the display will show “Configure” 
on one line, followed by “Exit” on the line 
below. If you wish to abort configuration, 
simply tap the Select button at this time. If, 
on the other hand, you wish to configure 
one of the modem settings, simply rotate the 
encoder clockwise, or counter clockwise, 
to cycle through the top level menu selec-
tion. Once you see an item that you wish 
to change, tap the Select button again. This 
will then allow you to cycle through a list 
of choices (again by rotating the encoder). 
When the choice you wish to make appears 
on the display, tap the Select button again. 
This will record your choice, and the menu 
will revert to the top level, showing “Exit” as 
the default choice. You can now make addi-
tional changes, or tap the Select button again 
to exit the Configuration menu. 

Hot Keys 
A number of “Hot Keys” have been 

defined for use with the modem: 
F1 to F7: Play Macros. 
Ctrl-Fn: Record Macros — Enter key-

strokes. When finished, Press F9. 
Alt-Fn: Delete Macro associated with 

Fn. 
F8: Toggle TUNE mode. May be accessed 

only in RX or TX (Not in Setup, or Macro 
Recording). 

F11: Display the first few bytes stored in 
EEPROM. 

F12: Toggle between RX and TX (again, 
not in Setup or Macro Recording). 

F10: Display the main Setup Screen. 
(Accessible only in RX mode). 

#: A numeric selection from the Main 
Menu, selects a submenu, which is then dis-
played. Another numeric selection activates 
your selected parameter. 

Ctrl-M: Save keyboard entries into a 
fixed location in EEPROM (for recording 
“my call sign,” for use in Macros). 

Ctrl-T: Save keyboard entries into a 
RAM location (for recording “their call sign” 
— also for use in Macros).

Alt-M: Insert “my call sign” into a 
Macro. 

Alt-T: Insert “their call sign” into a 
Macro.

Ctrl-F: Save the current frequency into 
EEPROM so that it can be restored at the 
next power-up.

Alt-F: Retrieve the saved frequency and 
make it the current frequency.

Ctrl-Tab: Display the current (audio) 
frequency.

Ctrl-A: Enable AFC. 
Alt-A: Disable AFC. 
PgUp: Increase PGA gain. 
PgDn: Decrease PGA gain. 
Ctrl-L: Clears the text area of the LCD. 
Ctrl-K: Clears the keyboard buffer (while 

receiving, keystrokes are not displayed — 
this allows clearing the buffer, so that call 
signs may be entered, or re-entered in case 
you think that you have entered the wrong 
call sign). 

Ctrl-B: Clears the internal buffers. 
Ctrl-Q Inserts a TX-OFF control charac-

ter in the TX buffer, or Macro. 
Ctrl-O Toggles the display backlight on 

and off. 
Here is a useful combination of macros: 
F1: CQ
F2: Call “them” twice w/ toggle
F3: Call “them” once w/o toggle
F4: BTU
F5: 73
F6: Brag File
F7: Test message
For your personal macros, choose what-

ever you want. You can create ones for con-
testing, or just for casual rag-chewing. 

Updating the Modem with Newer 
Features 

Increasingly today, microcontroller proj-
ects have an ability to be “field updated” 
with new features and software updates 
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made available by the designers. So, instead 
of needing to send your instrument back for 
reprogramming to get these new capabilities 
and bug fixes, you can simply download the 
latest-and-greatest software from the Internet 
and send it to the target hardware. The device 
automatically updates its internal memory 
with the new program. What a great way to 
keep your project completely up to date with 
the latest features! 

We have incorporated this field updating 
capability into the NUE-PSK Digital Modem. 
You just need to connect your PC serial port to 
the modem using a simple adapter, and send 
it the new software obtained from the NUE-
PSK Web site whenever new capabilities are 
made available. 

We designed a TTL serial port into the 
modem, accessible via a 4-pin connector, P4, 
located inside the battery compartment. By 
connecting your computer’s USB port to an 
inexpensive USB-to-TTL adapter such as 
the CP2102 from SparkFun and plugging the 
CP2101 (or equivalent) into P4, the modem’s 
“Load Software” menu selection will initiate 
the bootload sequence to “burn” the new soft-
ware into the modem’s controller.9 Then, once 
you power-cycle the modem, you’ll be running 
the latest software release containing, for exam-
ple, a new digital mode, some new I/O capabili-
ties, and so on. This is really quite a convenient 
and powerful capability for the project. 

Possible Future Enhancements 
Updating the graphics LCD to display 

current spectral information consumes a 
considerable fraction of the total processing 
time. If all LCD display routines were to be 
off-loaded to a small microcontroller, there 
would be more time available for processing 
faster digital modes, such as PSK63. 

Additional dynamic range would be pos-
sible if an external ADC, with 16 to 24 bits, 
were to be employed. The Austin QRP group 
is currently evaluating ADCs and Codecs that 
might be used in this application. 

The next logical step in the evolution of 
portable amateur radio digital communication 
is decreased size and increased portability. We 
envision someday — perhaps sooner rather 
than later — having a completely integrated, 
handheld digital modem and low-power 
transceiver. 

Conclusions 
“On-Air” experience with the NUE-PSK 

Digital Modems has clearly demonstrated the 
effectiveness of the design, and its suitability 
for portable digital-mode operations, with an 
attractive, compact, low-power package. It is 
also a testament to the wonderful design skills 
of Moe Wheatley and his PSKcore software 
engine, as well as to how evolving technology 

continuously improves our options in amateur 
radio. 

We very much enjoyed collaborating on the 
design of this project with several members of 
our QRP clubs. We are confident that you will 
enjoy the flexibility and power offered with the 
NUE-PSK Digital Modem when used on your 
bench or out under the stars. 
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preprogrammed microcontrollers) later in the year. 

7SchmartBoards: www.schmartboard.com See part 
202-0011-01 (32-100 pin QFP, 0.5 mm). 

8Moe Wheatley, AE4JY, “PSKCore,” www.qsl.
net/ae4jy/. For his source code, download 
PSKCoresrc.zip. For the full technical specification, 
download “PSKCore Interface Specification and 
Technical Description Ver 1.40” 

9USB “Breakout Board” Interface, SparkFun CP2102, 
www.sparkfun.com/commerce/product_info.
php?products_id=198 

Other Useful PSK31 Technology References: 
Don Urbytes, W8LGV, “A PSK31 Tuning Aid,” QST, 

Dec 1999, pp 35-37. 
Steve Ford, WB8IMY, “PSK31 — Has RTTY’s 

Replacement Arrived?,” QST, May 1999, pp 41-44. 
Steve Ford, WB8IMY, “PSK31 2000,” QST May, 2000, 

p 42. 
Howard “Skip” Teller, KH6TY, and Dave Benson, 

NN1G, “A Panoramic Transceiving System for 
PSK31,” QST, June 2000, pp 31-37. 

Dave Benson, K1SWL (ex-NN1G), “The NJ Warbler 
— a PSK-80 Single Board Transceiver for PSK31,” 
QRP Homebrewer, Summer 2000, pp 15-21. 

Johan Forrer, KC7WW, “Using the Motorola 
DSP56002EVM for Amateur Radio DSP Projects,” 
QEX, Aug 1995, pp 14-20. 

ARRL Web site collection of PSK31 articles, links, 
literature and products: www.arrl.org/tis/info/
psk31.html 

The “Official” Homepage of PSK31 is at aintel.
bi.ehu.es/psk31.html 

Milt Cram, W8NUE, was first licensed in 1953 
as WN8NUE and has held several calls (minus 
the “N”) with an Amateur Extra class license. 
He is a longtime homebrewer and member of the 
Austin QRP Club, enjoying operating low power 
and the digital modes on HF. Milt holds BEE, 
MS and PhD degrees in electrical engineering 
from Georgia Tech and comes from a family of 
hams (dad, Ernie, W8JKX (SK), great uncle, Oz, 
W1JUJ (SK), and son, Marc KC5RWZ). Milt is 
now retired, after serving many years in elec-
tronic design and management. 

George Heron, N2APB, has been a software 
developer and technology manager in the north-
eastern US for more than 30 years, working in 
later years in the field of information security. 
He is the chief scientist for McAfee, helping to 
develop new security products and technolo-
gies to protect home and corporate users. A 
ham since 1968, he is an avid homebrewer in 
RF and digital circuits, with a special interest in 
DSP and microcontroller applications to QRP, 
and has co-developed the Micro908 Antenna 
Analyzer. He leads the New Jersey QRP and 
the American QRP clubs, and has previously 
edited/published QRP Homebrewer magazine 
and Homebrewer Magazine. 


