
 QEX – Mar/Apr 2008 3

NUE-PSK Digital Modem
Enables PSK31 field operation… without using a PC!

Milt Cram, W8NUE and George Heron, N2APB

9807 Vista View Dr, Austin, TX 78750, w8nue@arrl.net • 2419 Feathermae Ct, Forest Hill, MD 21050, n2apb@amsat.org

1Notes appear on page 12.

PSK31 is one of the latest communica-
tions modes to capture the interest of hams
worldwide. Its inherent ability to dig out low,
nearly inaudible signals is ideally suited for
low power, QRP, enthusiasts. The PSK31
digital modem engine, however, requires
intense digital signal processing (DSP) that is
only commonly available in PC sound cards.
Thus, the PSK operator desiring portability
for field operation is locked into using a lap-
top computer as a controller, which results in
a cumbersome station. But there’s hope!

This article presents the design and con-
struction of a stand-alone, battery-operated
digital modem using a Microchip dsPIC
microcontroller. The project includes a
graphic display for transmit and receive text
data, as well as a band spectrum and tuning
indicator. Using GPL open source software,
the modem can be homebrewed for less than
$80. When coupled with an SSB-capable
transceiver or with a popular PSK-xx trans-
ceiver board from Small Wonder Labs, you
too can have an effective portable PSK31
station.

Background
PSK31 was introduced in 1998 to the

ham technical community at large in RSGB’s
RadCom magazine.1 Hams could get on the
air with this digital mode using a dedicated
(expensive) DSP card, a crude DOS control
program for entering/displaying messages,
and interface cables for connection to the
station SSB transceiver. Later, a brilliant PC
program was developed (DigiPan) that used
a panoramic graphical display to show all
signals occurring within a band segment, and
print received messages on the PC screen.2
This was an astonishing improvement in
the user interface for PSK31! Later in 2001,
Dave Benson, K1SWL, designed a single
board PSK31 transceiver kit (PSK-20) that
required no physical tuning, and when used
with DigiPan running on a PC, it made a
quite compact PSK31 station.3

Even with these clever hardware and
software designs, however, there still was

room for improvement. The sound card in
a laptop or PC is still needed for the intense
demodulation requirements of the PSK algo-
rithm. If you were to use a modern laptop for
that computing power, taking an expensive
and delicate computer into the field is a hair-
raising experience. It is difficult to see the
subtle spectral lines or the screen text data
when viewing a laptop LCD display in the
bright sunlight of a mountaintop QSO. Then,
only if your laptop battery lasts long enough
to enjoy the fun of operating PSK out in the
open, and if you can see the laptop display in
the bright sunlight, and if you feel like lug-
ging that expensive laptop out into the harsh
elements, you could indeed operate PSK31
in the field — but what an ordeal!

PSK MODULATION-
DEMODULATION OVERVIEW

We will not go into great depth concern-
ing the theory and operation of PSK. In this
paper we’ll first overview the PSK31 encod-
ing scheme, followed by the more demand-
ing decoding scheme.

Note that while the NUE-PSK project
focuses on the generation and decoding of
PSK31, it is generally known that PSK31 is
merely one of many modulation techniques
within the “phase shift keying” family of
communication techniques. PSK31 operates
at 31.25 bits/second, while other speeds may

be achieved using slight algorithmic varia-
tions. PSK is perhaps more accurately termed
BPSK, for bi-phase shift keying, whereby
two distinct phase states separated by 180°
are used to convey the information. Four
states may also be encoded/decoded, as is
done with QPSK (quad-phase shift keying),
in order to provide higher speeds and the abil-
ity for better error correction methods.

We will primarily describe the topic of
PSK31, yet understand that some of these
other modes can also be achieved with the
same hardware and software used in NUE-
PSK.

Modulation (PSK31 Encoding)
The PSK31 modulation algorithm is quite

straightforward and could even be imple-
mented on a conventional PIC-like device
(one without a DSP core). This was done in
several projects over the years within the QRP
community; see, for example, the PSK31
Beacon project from the NJQRP Club.

Summary of the encoding steps:
1) Varicode encoding of the input text

character stream coming from the keyboard
to create an optimized bit-representation of
the text;

2) BPSK serialization of the Varicode
character to create the proper sequence of
phase changes in the waveform based on the
bits in the Varicode;

3) Form the wave shape from the com-

4 QEX – Mar/Apr 2008

bination of phase changes coming from the
serializer, being careful to reduce the power
level to zero when the 90° phase changes
occur, thus reducing the bandwidth of the
transmitted PSK signal.

These steps are all performed by a dsPIC
processor, per the functional block diagram
shown in Figure 1. As ASCII characters
are produced by a keyboard, they are first
converted to Varicode encoded characters
using a lookup table. A string of binary
bits, the length of which is variable (hence
“Varicode”), is generated from the table.
The strings of bits are then used to drive a
differential phase state machine, which uses
predefined tables to modulate the amplitude
of the quadrature outputs (sine and cosine
waveforms) of a numerically-controlled
oscillator (NCO). The sine and cosine codes
are derived from a lookup table to produce
the NCO carrier.

The two quadrature oscillator signals
are multiplied by amplitude functions, as
determined by the phase state machine, and
the resulting channels of data are added to
produce a digital version of either a BPSK
or QPSK signal. Although a simpler scheme
could be used for BPSK alone, this method
has the advantage that it can also generate
QPSK. This digital stream of data is then
sent to a digital to analog converter (DAC) to
produce an audio carrier with BPSK/QPSK
modulation. The output of the DAC is sent
to the transceiver audio input for conversion
to RF.

Demodulation (PSK Decoding)
Whereas the encoding process described

above is pretty straightforward, the PSK
decoding algorithm is significantly more
complex and computationally demanding.
This may be why there have been so few
homebrew standalone PSK demodulator
projects in the ham community. The PC
sound card is clearly the easiest way to pro-
vide the intense DSP processing needed for
decoding PSK; hence PC-based PSK31 pro-
grams abound.

This is where the stand-alone (PC-less)
NUE-PSK project excels — it is able to inde-
pendently handle the complex PSK decoding
algorithm in real time, thus providing the first
truly portable digital modem for hobby use.

Follow Figure 2, the PSK demodula-
tion block diagram, as we walk through the
decoding steps.

Summary of the decoding steps:
1) Receiver audio is sampled at 8 kHz,

creating a digital floating point representation
of the audio stream.

2) Data is fed into a 512 point Fast Fourier
Transform (FFT) for display, tuning and
visual signal monitoring purposes.

3) The audio floating point data stream is
converted to a baseband signal centered on
the operating frequency. The NCO generates
sine and cosine signals and multiplies them
with the audio stream to produce I (in phase)
and Q (quadrature phase) data streams.

4) The I and Q data streams are decimated
by 16 to reduce the sample rate to 16 times
the signal BW. The final sampling rate then
is 8000 / 16 = 500 Hz. [In digital-signal-pro-
cessing speak, to decimate a signal by some
number, n, you keep every nth sample, throw-
ing away all of the other samples.—Ed.]

5) A 65-tap “matched bit” finite impulse
response (FIR) filter is applied to produce
a magnitude response for best signal to
noise ratio (SNR) for data extraction, and
to minimize inter-symbol interference (ISI)
presented in the signal path and in the receive
filter.

6) AFC is performed to lock on the
incoming signal frequency by using another
FIR with BW = 31.25 Hz.

7) AGC is accomplished by computing
the average signal magnitude from the I and
Q data streams. Infinite impulse response
(IIR) filters are selected to provide either
slow decay or fast attack settings.

8) Frequency error detection is done by
scanning the FFT data within the capture
range while looking for the nearest peak.
Also, a wide range AFC algorithm is per-

formed by calculating the slope and moving
the NCO to place the peak at the center.

9) Symbol synchronization is done by
finding the center of each symbol in order
to sample at the optimum time. There are 16
samples per symbol at 500 Hz intervals, so
each sample energy is IIR-filtered and stored
in an array. The array elements with the most
energy are selected as the center of the data
symbol at each symbol period of 32 ms.

10) Squelching is done by taking the his-
togram of incoming signals and considering
the spread (difference angle, or arctangent
of Q / I between each sample) around 0°
and 180° as a measure of signal quality. The
narrower the spread, the stronger and more
coherent the signal.

11) Symbol decoding is the last step,
whereby we convert the I and Q signals back
to two possible symbols by using the differ-
ence angle (<90° = 1, >90° = 0). The resul-
tant symbols are shifted into a register until
the inter-character mark (2 or more zeros) is
found. The shift register is then used as an
index into a reverse Varicode table containing
the originally transmitted characters.

These eleven algorithm steps can be fol-
lowed in the block diagram of the demodula-
tion process.

The Path to a Design
After operating with the limitations of

using a laptop in the field, we decided that
we wanted a PSK station that did not require
the use of a PC in any form. We wanted
something that would be very portable and
compatible with QRP operations, providing
many hours of operation from batteries. The
project described in this article is a result
of this desire — but it took a little time for
advancing technology to pave the road.

The initial efforts to develop a “portable
PSK” controller began about eight years ago
with a reproduction of the original G3PLX
approach described in RadCom, but with a
more current DSP card providing the horse-

Figure 1 — PSK modulation block diagram.

 QEX – Mar/Apr 2008 5

Table 1
NUE-PSK Digital Modem Parts List

Designator	 QTY	 Description	 Source	 P/N
C1, C2, C3, C7, C9, C11
C13, C17, C18, C19, C21
C22, C23, C24, C25	 15	 Capacitor, 0.1 µF, 1206 SMT	 Digi-Key	 PCC1883CT-ND
C4, C5, C9, C10, C12, C17	 6	 Capacitor, 1 µF, 16 V, SMT	 Digi-Key	 PCE3045CT-ND
C6	 1	 Capacitor, 10 µF, 25 V, SMT	 Digi-Key	 PCE3118TR-ND
C15, C16	 2	 Capacitor, 20 pF, 1206 SMT	 Digi-Key	 311-1153-1-ND
D1, D2, D3	 0	 Diode, Schottky 1N5817, DO-41	 Digi-Key	 1N5817DICT-ND
D4, D5	 2	 Diode, Schottky MA2SE01, SMT	 Digi-Key	 MA2SE0100LCT-ND
ENC-1	 1	 Rotary encoder	 Mouser	 688-EC12E2420802
J1	 1	 Coaxial dc power connector, 2.1 mm	 Mouser	 163-5004-E
J2	 1	 6-pin Mini-DIN	 Mouser	 161-2206
J3	 1	 8-pin Mini-DIN	 Mouser	 161-2208
J4	 1	 Pinheader, female, 1 × 2	 Mouser	 517-870-01-03
J5	 1	 IC socket, 16-pin DIP	 Mouser	 575-199316
J6, J7	 2	 9 V battery clip	 All Electronics	 BST-3
LCD	 1	 LCD, CFAG12864, 128 x 64, graphics	 Crystalfontz	 CFAG12864BTFHV
P1	 1	 Pinheader, 1 × 2, 0.1”	 Mouser	 517-834-01-36
P3	 1	 Pinheader, 2 × 3, 0.1”	 Mouser	 517-834-01-36
P4	 1	 Pinheader, 1 × 4, 90°	 Mouser	 517-5111TG
P5	 1	 Pinheader, 1 × 2, 0.1”, 90°	 Mouser	 517-5111TG
P8	 1	 8-pin Mini-DIN plug	 Mouser	 171-2608
PB1	 1	 Pushbutton, DPST, momentary	 New ark	 19C6398
PB1-cap	 1	 Pushbutton cap	 New ark	 18M6492
Piezo	 1	 Piezo buzzer	 Digi-Key	 433-1023-ND
Q1, Q2, Q3	 3	 Transistor, NFET, 2N7000	 Digi-Key	 497-3110-ND
R1, R2, R9, R12	 4	 Resistor, 1 kΩ, 1206 SMT	 Digi-Key	 RHM1.00KFCT-ND
R4	 1	 Resistor, 10 kΩ, 1206 SMT, 1%	 Mouser	 71-CRCW1206-10K
R7, R8, R10, R11	 4	 Resistor, 10 kΩ, 1206 SMT	 Digi-Key	 311-10KECT-ND
R13	 1	 Mini-potentiometer, 1 kΩ	 Mouser	 317-2080F-1K
R3	 1	 Resistor, 47 Ω,1/2 W axial	 Mouser	 293-47-RC
R14	 1	 Trim pot, 10 kΩ	 Mouser	 652-3306W-1-103
R15, R16	 2	 Resistor, 6.8 kΩ, 1206 SMT	 Digi-Key	 311-6.8KECT-ND
R5	 1	 Resistor, 2.0 kΩ, 1206 SMT, 1%	 Mouser	 71-CRCW1206-2K
S1	 1	 Switch, SPDT, slide, PCB mount, 90°	 Digi-Key	 EG1917-ND
SH-1	 1	 Pinheader, 1 × 2 shunt	 Mouser	 517-951-00
U1	 1	 IC, Microchip DSC, 64-pin QFP,
		 dsPIC33FJ128MC706	 Mouser	 579-33FJ128MC706IPT
U2, U3	 2	 IC, Octal Level Shifting Buffer,
		 TXB0108 (TSSOP-20)	 Mouser	 595-TB0108PWR
U4	 1	 IC, Microchip EEPROM, 24AA256 (8SOIC)	 Digi-Key	 24AA256-I/SN-ND
U5	 1	 IC, Freescale microcontroller,
		 MC68HC908QY4, 16-DIP	 Digi-Key	 MC68HC908QY4VPE-ND
U6	 1	 IC, Dual-DAC, MCP4922, 14SOIC	 Digi-Key	 MCP4922-E/SL-ND
U7	 1	 IC, Programmable Gain Amplifier,
		 MCP6S21, 8SOIC	 Digi-Key	 MCP6S21-I/SN-ND
U8	 1	 IC, Op Amp, MCP601, 8SOIC	 Digi-Key	 MCP601-I/SN-ND
U9	 1	 Voltage regulator, 5 V switching,
		 PT78ST105H, 5 V	 Digi-Key	 PT78ST105H-ND
U10	 1	 Voltage regulator, 3.3 V, LP2950 (TO-92)	 Digi-Key	 LP2950CZ-3.3-ND
X1	 1	 Crystal, 10 MHz, 20 pF (FOXSLF/100-20)	 Digi-Key	 631-1101-ND
W1	 1	 Flex cable assembly, 1 × 20	 Newark	 FSN-21A-20
	 1	 Cable assembly, 3-wire (battery clips)
Hardware		
	 8	 Machine screw, pan slotted, #2-56 × 0.25”	 Mouser	 5721-440-1/4-SS
	 8	 Machine screw, pan slotted, #4-40 × 0.25”	 Mouser	 5721-256-1/4-SS
	 4	 Spacer, hex tapped, #2, 0.375” (LCD)
	 4	 Spacer, nylon, hex tapped,
		 4-40 × 0.25” (PCB)	 Mouser	 561-L4.25
	 1	 Knob	 Mouser	 506-PKG50B1/4

power for the PSK31 engine. The design also
included a novel Morse user interface and
tight coupling to the PSK-20 transceiver. The
project was documented in the QRP litera-
ture and was presented at ham conferences,
but ultimately it was too complex and fragile
for wide-scale use.4 See Figure 3.

The next approach we considered was

based on the use of low power DDS (direct
digital synthesis) chips for generating audio
tones with the proper phase modulation. A
multiplying DAC was used for modulating
and shaping the amplitude of the tones, and
a microcontroller was used to demodulate
the PSK and display the resulting characters.
Analog filters were used for filtering the

PSK signal ahead of digital processing in the
microcontroller. The analog filters, however,
proved to be too bulky and difficult to design
when trying to use standard-value compo-
nents. Such filters also cannot provide the
same level of performance as can be obtained
with digital filters. Eventually this approach
was also abandoned.

6 QEX – Mar/Apr 2008

Figure 2 — PSK demodulation block diagram.

Success At Last
The approach that ultimately proved

workable in every regard was one in which
all processing is accomplished within a
single microcontroller — one that is capable
of performing the digital signal processing
“number crunching” as well as handling all
control chores. The newly-released dsPIC33
microcontroller from Microchip is a delight-
fully powerful combination of a conventional
control processor with a DSP core for intense
digital signal processing.5 Available in a
small package with lots of I/O for control-
ling peripherals, this was just what the doctor
ordered.

It was perhaps fortuitous that others in
our QRP clubs were having similar fantasies
at about the same time. K5JHF was explor-
ing the dsPIC chip family and decided they
would make a good basis for a number of
projects of interest to the group. He kick-
started things with the design of a dsPIC33
project board, including such peripherals
as a programmable gain amplifier (PGA),
digital to analog converter (DAC), EEPROM
memory, liquid crystal display (LCD), a
quadrature rotary encoder and interfaces

for a programmer and a keyboard. This was
enough to give birth to what we now call the
NUE-PSK digital modem.

NUE-PSK Hardware Overview
As illustrated in the schematic diagram

of Figure 4, U1 — a dsPIC33F is at the heart
of the project design. This highly-integrated

Figure 3 — We built this portable PSK
unit around 2000. It was too complex and

expensive, with separate boards for DSP and
control processing. It did include a novel CW

user interface.

dsPIC33F device employs a powerful 16-bit
architecture that seamlessly integrates the
control features of a Microcontroller (MCU)
with the computational capabilities of a DSP
IC. The resulting functionality is ideal for
applications that rely on high-speed, repeti-
tive computations, as well as control — just
perfect for our PSK31 digital modem proj-
ect! Table 1 is the complete parts list for the
NUE-PSK modem.

The dsPIC33F central processing unit
(CPU) has extensive mathematical process-
ing capability with its DSP engine, dual
40-bit accumulators, hardware support for
division operations, barrel shifter, 17 × 17
multiplier, large array of 16-bit working reg-
isters and a wide variety of data addressing
modes. Flexible and deterministic interrupt
handling, coupled with a powerful array of
peripherals, renders the dsPIC33F devices
suitable for control applications. Reliable,
field programmable flash program memory
ensures scalability of applications that use
the dsPIC33F family of devices. The specific
device we used contains 128 KB of program
flash memory, 16 KB of RAM, nine 16-bit
timers, 16 general-purpose I/O pins, a pulse

 QEX – Mar/Apr 2008 7

width modulation port, a port designed for
reading quadrature encoders, two 16-channel
ADCs, two UARTS, two SPI ports, two I2C
ports, and comes in a 64-pin quad surface
mount flat pack package. Whew, this sure is
a powerful chip.

The initial prototype used the dsPIC to
capture and decode signals from the PS2
Keyboard. This worked fine, except that on
rare occasions, the dsPIC appeared to reset
itself. This had the unfortunate effect of los-
ing current operating information such as the
frequency, call sign, and other. After reviewing
all information regarding the PS2 keyboard,
we didn’t like the way we were capturing
scan codes from the keyboard. Data was being
sent synchronously from the keyboard to the
dsPIC, using a clock of only roughly known
frequency (~10-20 kHz). Each clock pulse
caused an interrupt in the dsPIC, which then
sampled the data stream. With the keyboard
protocol, selected by IBM many years ago,
each scan code is sent using 11 clock pulses.
In addition, each keystroke press and release
results in three or more scan codes being gen-
erated. Consequently, each keystroke gener-
ated a minimum of 33 interrupts.

Apparently too much time was being
wasted just processing keyboard interrupts,
and that was the likely cause for the occa-
sional dsPIC resets. To solve this problem,
we decided to use another small microcon-
troller to do most of the work handling the
keyboard data. This second microcontroller,
U5 (Freescale 68MC908QY4) simply
responds to the clock from the keyboard
and gathers the bits received into a complete
scan code (11 interrupts). Once a scan code
is completed, the ‘QY4 generates a strobe
pulse to the dsPIC. Again, an interrupt in the
dsPIC causes the dsPIC to capture an entire
scan code on a set of port pins, and place it
in a buffer, or merely sets a flag if the scan
code is not a usable character. The ultimate
effect of this division of responsibilities is
that the dsPIC now responds to only 1/11th of
the number of keyboard interrupts that were
present in the first attempt.

Two LCD displays were initially chosen
for the PSK interface. A character LCD was
used for displaying received decoded text and
as a monitor for text being placed in the trans-
mit queue. Text is displayed when in transmit
and as macros are being played back. The
cursor changed from steady to flashing when
in transmit. Setup Menus were also displayed
on the text display. A 144 × 32 pixel graph-
ics LCD was then used to display the FFT-
generated spectrum of the audio passband.
The lowest six rows of the display were used
for the tuning cursor. Since a 512-point FFT
is used with an 8 kHz sampling rate, we have
256 points for a 4 kHz passband. We chose
to display only the frequency range from
500 Hz to 2500 Hz, using 128 columns of
the display. (The last 16 of the 144 horizontal
pixels in each row were not used.) The data
and control lines for each display were buff-

ered by level translators U2 and U3, required
to match the voltage levels between the 3.3 V
dsPIC and the 5 V displays.

Since our original prototypes were built,
we decided that we could possibly save some
cost and simplify packaging by using a single
graphics display for both text and spectral
display. A 128 × 64 pixel display was chosen.
The display drivers were combined into one,
and modified to handle display of text buf-
fers and an FFT of the input signal (spectral
display), along with a “cursor” for tuning.
Text is displayed on the bottom half of the
display, using 5 × 8 pixel characters with
4 lines of display. The top 32 pixels are used
for the spectral display, and the tuning cursor.
In addition, the display incorporates a back-
light that can be turned on or off by means
of either a hot key or from a menu selection.
FET transistor Q2 buffers the control line
going to the backlight pin on the LCD.

The EEPROM, U4 (24AA256), provides
local storage for the macro and user-set vari-
ables entered during modem operation. This
memory device is controlled by one of the
I2C ports on the dsPIC.

A computer-adjustable gain stage, the pro-
grammable gain amplifier (U7, MCP6S21),
brings the low level audio input stream com-
ing from the SSB receiver to the analog-to-
digital converter on the MCU. Amplifier U8
(MCP601) presents precisely one-half the
Vdd voltage to the ac reference input of U7.

Processed digital transmit audio tones are
converted to a continuous analog stream by
D-to-A converter U6 (MCP4922). The audio
level control R4 sets the appropriate modula-
tion level to the input of the SSB transmitter,
which is generally a one-time setting for the
transmitter being used. To produce a bipolar
ac signal, a numeric constant equal to one

  Buying or Building Your Own NUE-PSK

Assembled and tested NUE-PSK modems can be purchased from the
American QRP Club at www.amqrp.org/kits/nue-psk31/. The cost is $199 for US
and Canadian shipment; $219 for overseas orders. Accessories are also available.
You can order online, or send a check or money order payable to the American
QRP Club c/o George Heron, 2419 Feather Mae Ct, Forest Hill, MD 21050. Full
and partial kit versions will be available later this year. Check the American QRP
Club Web page for the latest updates.

If you prefer to source your own parts and build from scratch, see Figure 1. The
NUE-PSK software is available for free downloading on the NUE-PSK Web page.

Whether you decide to homebrew the modem, or perhaps get the partial kit
and assemble it yourself, don’t be afraid of soldering the surface mount ICs used
in this project. Here’s a technique that works great even for the 64-pin dsPIC chip.
Using a magnifying lamp, position the IC on the pads and tack solder two corner
leads to hold the package in place. Liberally solder all the leads to the pads without
any concern for shorts between the leads. Next, use some desoldering braid (like
SolderWick) to remove all excess solder along the rows of leads. Don’t worry about
overheating the IC package — it’s tough. After all that excess solder is sucked up,
you’re left with the cleanest looking connections that could ever be achieved by
hand soldering!

8 QEX – Mar/Apr 2008

Figure 4 — The NUE-PSK schematic diagram.

 QEX – Mar/Apr 2008 9

half of the full scale output is added to the
data stream generated by the dsPIC. Since
the output is capacitively coupled, the dc
term represented by the half scale constant is
removed. The full analog signal is presented
to the audio level control, however, and one
of the dsPIC ADC inputs is used to mea-
sure the dc voltage on the wiper of the level
control. This allows the dsPIC to determine
the position of the wiper and display that
information on the LCD, as desired (a menu
option). This facilitates setup with different
rigs, once the correct setting is determined
for each rig. The wiper of the control is ac
coupled to the rig audio input.

FET transistor Q1 (2N7000) buffers the
push-to-talk (PTT) control line sent to the
transceiver, used to put the radio into trans-
mit mode.

A piezo buzzer is provided to deliver
audible feedback for Tuning, menu selection
and for future features. FET transistor Q3
buffers the control line to the buzzer.

The audio input, output and PTT control
lines are brought off the pc board using an
8-pin mini-DIN connector, J3. This approach
minimizes the number of connectors and
cables normally used to connect a digital
mode controller to an HF rig, as sometimes
these cables can get mixed up and messy
at the operating station. Further, when the
NUE-PSK modem is used with a dedicated
HF rig – say a Yaesu FT-817/857/897 or a

Figure 5 — The two-LCD Prototype used
a graphic LCD for the spectrum display

(top) and a character LCD for receive and
transmit text characters (bottom).

Figure 6 — The newer single graphic LCD
shows both spectrum and receive or

transmit characters. The backlight affords
great night time visibility and costs only

20 mA in additional current demand.

Figure 7 — Power requirements for the NUE-PSK modem. Measurements illustrate the
dramatic benefits of using the switching “buck” regulator. Regulator efficiency increases as
higher supply voltages are used. The top curves show the input current requirement when

running with the display backlight on, while the lower curve shows 15 mA less current when
the backlight is off.

Figure 8 — The two 9 V alkaline batteries nestle tightly against the circuit board in the case
compartment. When installed, the screw-on cover holds them firmly in place.

PSK-20 transceiver card — the other end of
the cable may also be consolidated to a single
multi-pin plug, providing a neat and elegant
interconnect with the radio.

For the design of the power supply, we
chose to use a switching regulator (U9)
instead of the more conventional 7805 linear
regulator to get 5 V on the board. This solu-
tion requires a lower operating current from
the supply because of the greater efficiency

achieved by the switching “buck” regulator.
A linear regulator merely dissipates the power
difference between input and output in the
form of heat. Thus, even though the dsPIC
draws approximately 100 mA, the modem
now only requires about 60 mA from the
supply during normal operation, and portable
power is easily provided by conventional
alkaline batteries. Figure 7 shows the current
requirement as a function of supply voltage.

10 QEX – Mar/Apr 2008

A small drawback of using the switch-
ing regulator is that a 9 V minimum input is
required to maintain regulation; so battery
operation is achieved by using two standard
9 V batteries in series to provide a nominal
18 V input to the modem. See Figure 8.
Of course the digital modem may instead
be externally powered by applying 12 V
through J1. When external power is applied,
the internal battery connector should be
disconnected, or the batteries should be
removed.

The NUE-PSK project is assembled
using a single 4 × 5 inch pc board — quite
an improvement over the Portable PSK
projects done previously, as well as over the
prototype hardware for this current design.
The pc board holds all components — the
LCD, rotary encoder, power connector and
radio interface connectors — and may be
assembled into your favorite homebrewed
enclosure, or in the clam shell aluminum
enclosure made available when the kit is pur-
chased from the American QRP club.6 This
enclosure also has a conveniently-accessed
compartment on the back side that houses
the 9 V batteries. See Figure 9.

Hardware Evolution
Before ending up with a neat and compact

circuit board, the NUE-PSK design started
out as a rather large and sprawling prototype
hardware layout. This is normally the case
with complex projects, because it allows the
designers to try out different approaches and
components, while also allowing them to
easily monitor and debug the design.

The prototype design was built using a
proto-board purchased at Fry’s Electronics.
It has plated-through holes on 0.1 inch
centers to facilitate mounting through-hole
components. The surface mount dsPIC
microcontroller is mounted on a “Schmart-
Board,” also obtained from Fry’s.7 This
particular board is designed to permit attach-
ing 32 to 100 pin SMT devices, and has
0.65 mm lead separation (pitch). Schmart
Boards are available in several pitches and
pin count configurations to accommodate
prototyping of a range of SMT controllers.
Header pins and sockets are used to connect
the board to the main prototype board. Point-
to-point circuit connections were accom-
plished using 30-gauge Kynar wire, and a
hand-stripping tool was used to strip the
ends prior to soldering to the socket/connec-
tor pins. Thus the prototype was rather easily
assembled and the result was relatively solid
when complete.

Development Tools and Getting
Started in Software

While Microchip is well-known in the
ham community, few of us had experi-
ence using this new family of PIC chips.

Microchip apparently foresaw this situation
and they have provided an amazing number
of application notes, specifications and guid-
ance for designers to use in quickly coming
up to speed.

Further, even the best chip on earth would
be crippled without a good set of software
development tools; but Microchip again
came to the rescue with a C compiler and an
extensive DSP library that proved invaluable
to us in developing the project. Both of these
were available for free, so what more could
we ask!

To program the dsPIC, we discovered that
the inexpensive (~$25) PICkit2 program-
mer from Microchip is entirely adequate for
the job. In-circuit debugging is not readily
achieved with the free versions of the tools,
but we seemed to do alright regardless.

The final essential aspect in enabling
this project was a design reference for the
PSK31 modem algorithm, provided by Moe
Wheatley, AE4JY. His PSKcore documenta-
tion and C++ source code was professionally
done and placed into the public domain, so it
was available for our use.8 We concluded that
it would be a straightforward conversion to C
language so we could use our free compiler
and have it work on the dsPIC33, and we
relied heavily on it.

Software Overview
Although Wheatley’s code was writ-

ten in C++, and was developed for use on
a PC, it was not too difficult to convert it
for compilation under C, for which there is
a free compiler from Microchip. As part of
our QRP group project, John Fisher, K5JHF,
provided much of the initial software for the
project. His code includes most of the ini-
tialization code, a keyboard handler, a basic
LCD driver, I2C and SPI drivers, an interface
for EEPROM storage, and ADC and DAC
interfaces. Milt, W8NUE, developed the
remaining code fairly easily, even though his

programming experience has been mostly
in BASIC and Visual Basic, with some
FORTRAN.

PSK31 Decoder Processing
The receiver audio from an SSB trans-

ceiver is supplied to the NUE-PSK circuits.
Before processing by the dsPIC, it is passed
to the PGA, whose gain is controlled by the
dsPIC via a serial peripheral interface (SPI)
connection. The output of the PGA is then
sampled by an internal 12-bit ADC on the
dsPIC.

Timer 1 of the dsPIC provides all of the
critical timing. The timer is set for interrupts
every 125 microseconds, corresponding to a
sample rate of 8000 samples per second. In
receive (demodulation), ADC samples are
captured into a 2048 word buffer. Once the
buffer is half full, a flag is set to inform the sys-
tem that data is available for processing. Only
half of the buffer is processed at a time. This
ping-pong buffering technique allows continu-
ous data processing to be accomplished while
the other half is being filled in real time.

The “main” routine of the program is an
endless loop in which a number of flags are
tested and, if found to be set when queried,
they are used to trigger execution of various
functions. For example, if the ProcPSK flag
is checked and found to be set, a block of data
is then processed. Each sample in the buffer is
multiplied by a quadrature NCO, producing
I and Q signals. Each of these is then passed
two times through 35-tap decimate-by-4 FIR
filters. This provides I and Q signals that are
now sampled at 500 samples per second. (If
in PSK63 mode, the second filter bank will
decimate-by-2, providing 1000 samples per
second.) While the block of 1024 samples is
being processed, the second half of the buf-
fer is being filled with new samples under
control of the Timer 1 interrupts. Processing
then ping-pongs between the two halves of
the buffer. Using this technique we never

Figure 9 — This photo shows the NUE-PSK assembly. A 4 × 5 inch circuit board fits neatly into
the enclosure, holding all components. (Individual wires are shown connecting the display in
this prototype unit.) The battery “door” in the back of the case is visible along the left edge of

the photo. Two 9 V batteries fit into the space between the circuit board and the case.

 QEX – Mar/Apr 2008 11

write new data to the part of the buffer that is
being processed.

The next step is to split each of the I and
Q channels into two paths. One is for the
processing of the bits and one path is for
processing of frequency data, producing
four channels of data. Each of these channels
is filtered by a 65-tap FIR. The I and Q bit
channels should be optimized to minimize
intersymbol interference, while the I and Q
frequency channels should be optimized for
fast response of the automatic frequency con-
trol (AFC) loop. All of the FIR filters have
responses as specified by AE4JY. Instead
of using the PSKcore filtering code, we are
using FIR filters from the Microchip DSP
library, as these software filters are designed
to take into account the special hardware fea-
tures of the dsPIC. The results can be shown
to be the same, however. That is, they have
identical frequency responses.

The bit channels are processed as
described in the PSKcore specification to
determine the proper time for determina-
tion of the phase changes that are employed
in PSK. Since the bit rate of PSK31 is
31.25 Hz, each bit extends for 32 milli-
seconds in time. We have a sample rate of
500 Hz at this stage of processing, so there
are 16 samples for each bit. The point in
time for proper synchronization of the phase
detection process is based on an analysis of
the average energy in each of the 16 samples
when averaged over several bits. Without
going into the mathematical details, suffice
it to say that the maximum energy always
occurs at the boundary between successive
bits. This fact is used to establish synchroni-
zation in the bit detector.

We used the free WinFIRDesigner
software, with parameters obtained from
the AE4JY code to calculate the FIR filter

Figure 10 — NUE-PSK Prototype System. Clockwise from upper
right: NUE-PSK displays and prototype hardware, standard PS2

keyboard, FT-817 transceiver, and power supply.

Figure 11 — This close-up of the NUE-PSK prototype shows the
multiple cabling and programmer connection (lower right), which allows

convenient access to the electronics during design shake down.

coefficients. As noted above, the frequency
responses obtained with these coefficients
are identical to those published by AE4JY.

A processing block takes the four filtered
signals, and proceeds to:

1) obtain a digital AGC control;
2) calculate frequency errors;
3) correct the numerically controlled

local oscillator;
4) determine bit boundaries;
5) determine whether a 1 or a 0 is being

received;
6) collect the decoded 1s and 0s into a

Varicode pattern;
7) convert the Varicode pattern into

ASCII characters; and finally
8) display the resulting characters.
The PSKcore routines were used to per-

form AGC, bit synchronization, character
decoding, and so on. In addition, we added
code that will perform a 512 point FFT on
the samples (8 kHz sampling rate) that are
provided to the FIR filters. The processed
FFT is then converted to magnitude, and
then to a logarithmic scale. The 500-to-
2500 Hz portion of the spectrum is displayed
on the upper half of a 128 × 64 pixel graph-
ics LCD. This display is essential for tuning.
More about this later.

The final demodulator processing output
is a decoded ASCII character. These decoded
characters are displayed on the lower half of
the 128 × 64 graphics display, as four lines
of 20 characters each. The display driver
includes a line buffer so that once a line of
characters is filled, it is scrolled up and new
characters are inserted at the beginning of the
second line. This approach was chosen so
that printed characters remain fixed for easy
reading, as opposed to all characters being in
constant motion (scrolled horizontally) once
a line is filled.

PSK31 Encoder Processing
As mentioned earlier, the encoding pro-

cess is considerably less-intense as compared
to the decoder operations. ASCII characters
are accepted from the keyboard, converted
to Varicode characters, and the binary string
represented by the Varicode is used to modu-
late the phase and amplitude of an audio car-
rier — the PSK audio signal.

Although PSKcore code creates a block
of data to be sent to the PC soundcard, we
chose to generate a single sample of output
signal for each and every 125 microsecond
timer interrupt. This minimizes data memory
requirements. The method of generating the
desired phase and amplitude modulation is
that developed by AE4JY with the exception
that the tables used reside in program mem-
ory instead of data memory. The use of these
tables eliminates the time-consuming calcu-
lation of sine and cosine signal components.
The choice of placing these tables in program
memory was made because we had plenty of
program memory with the dsPIC, but not a
lot of spare data memory. The calculated data
samples are then scaled for output to a 12-bit
DAC. The DAC output, after capacitive cou-
pling, is then routed to the audio input of an
SSB transceiver.

As each interrupt occurs, the code steps
through the tables, providing modulation val-
ues for the I and Q signals, resulting in either
BPSK or QPSK modulation. The modulated
I and Q signals are added together prior to
the DAC.

Using the NUE-PSK Digital Modem
Install two standard 9 V alkaline batteries

in the battery compartment, or connect a 9 to
18 V dc supply to the coaxial power connec-
tor (2.1 mm) on the right end of the modem.

12 QEX – Mar/Apr 2008

of the peaks on the display. Don’t worry if it
is not exactly aligned. Once close to the peak,
stop turning the encoder. The modem now
attempts to “lock” onto the signal and fine-
tune the frequency if needed. If the modem
is able to lock onto a PSK signal, it will very
shortly begin decoding the signal, and then
display characters on the screen. The time
it takes for decoded characters to appear
depends on the ability of the modem to esti-
mate the center frequency of the incoming
signal, and the signal to noise ratio. Tuning
can also be done with the arrow keys on
the keyboard. The right and left arrow keys
provide finer tuning, while the up and down
arrow keys provide faster tuning. The tuning
rate of the encoder on the modem can also be
selected from a menu setting. Note: When
tuning in receive mode, the spectral display is
frozen—this is intentional.

Now, on to set-up for transmission.
Connect your rig to a dummy load.

Since PSK signals generated by the
modem contain simultaneous multiple fre-
quencies (over a very narrow bandwidth), it
is imperative that the audio output from the
modem not overdrive the input to the rig,
or very poor signal quality will result. To
facilitate setting the audio drive to the rig, a
potentiometer on the modem may be used
to adjust the level. In addition, the modem
includes provision for “measuring” the posi-
tion of the potentiometer, so that it can be

Signal Connections
Install a connector, or connectors, to the

end of the cable that has an 8-pin mini-DIN
connector. Most modern HF rigs have a
mini-DIN Data or AUX connector, which
provides for PTT, fixed level audio from the
receiver (independent of the volume control
on the rig), and a line-level (approx 100 mV
RMS) audio input to the transmitter. On the
Yaesu FT-817/857/897 this connector is a
6-pin mini-DIN. On many Kenwood HF rigs
there are 6-pin and 13 pin mini-DIN con-
nectors that may be used. See Figure 12 for
wiring details.

Keyboard
The modem requires an AT/PS2 style key-

board for character entry. The keyboard also
provides for entry and playback of macros.
Use the 6-pin mini-DIN connector on the end
of the modem to connect to the keyboard.

Operation
Once you have the cable between the

modem and the rig connected, keyboard
attached, and power available, you are ready
to operate PSK. But first, some additional
setup may also be desired, as described next.

Turn on the modem. If the cable between
the rig and modem is wired correctly, you
should see evidence of signals and/or noise
on the top half of the display (the spectrum
area). Tune your rig to one of the PSK
sub-bands. These are typically 70 to 74
kHz above the lower band edge on 40 and
20 meters. If there is PSK activity on the
band, you should see peaks on the graphic
display. The horizontal location of the peaks
corresponds to the audio frequency of each
signal relative to the tuned frequency of
the rig. For example, if the rig is tuned to
14070 kHz, the display shows audio frequen-
cies from 500 Hz to 2500 Hz, or actual RF
frequencies from 14070.5 to 14072.5 kHz.

Now for the fun — tuning! Turn the
encoder clockwise, or counterclockwise, to
move the cursor to a higher, or lower fre-
quency. (The cursor is the small triangular
icon just below the spectrum display.) The
audio frequency is displayed when turning
the encoder. Try to align the cursor with one

easily reset to the same setting in the future.
More on this later.

We have found that the best way to set up
for PSK operation is to initially set the trans-
ceiver for normal SSB operation, including
whatever power setting you usually employ.
For example, if you have a 100 W PEP rig,
set it up for 100 W on SSB.

Switch to Digital mode (if your rig pro-
vides that option, otherwise retain the SSB
mode).

Then press F8 on the keyboard. This
places the modem in the TUNE state, which
is denoted by “TUNE” at the top left of the
display. The modem is now generating a con-
tinuous tone, which is fed to the audio input
of the rig. The PTT signal from the modem
should also cause the transceiver to switch to
transmit. At this point, the potentiometer on
the modem (just to the right of the display) can
be adjusted to set the power level of the trans-
ceiver. A transmit power of 15 to 40% of the
rig’s rated power is recommended. (In other
words, 15 to 40 W with a 100 W rig). Keeping
the power at this level does two things. First, it
minimizes distortion due to clipping. Second,
it avoids excessive heating in the rig finals,
since PSK is a 100% duty cycle mode. A
power meter is very handy for making this
setting. Once the potentiometer has been set,
press F8 again to return to receive mode.

You should now be ready for transmit-
ting PSK.

Pressing F12 will place the modem in
transmit mode, but with a PSK idle tone
being generated (unlike the CW tone in
TUNE). If you are ready to give it a try, press
F12. At this point, anything that you type on
the keyboard will be converted into Varicode
characters and transmitted using PSK modu-
lation. Pressing F12 again, will toggle back to
receive. When in transmit mode, “TX” will
appear at the top left of the display.

Macros
If you want to set up macros (pre-

recorded strings of characters for subsequent
playback) before proceeding, now is a good
time to do it.

For those already familiar with PSK oper-
ations, macro setup is very similar to many of

Figure 13 — A USB-to-TTL interface adapter
from SparkFun will allow your computer
USB port to connect to the modem for
programming updates to the software.

Figure 12 — Connections between NUE-PSK digital modem and a typical HF transceiver. (The wiring diagram shows the connections for a
Yaesu FT-817 radio.)

 QEX – Mar/Apr 2008 13

Figure 14 — This schematic diagram shows an easy-to-build RS-232 interface that you can
use between your computer serial port and the serial TTL input on the NUE-PSK modem.

the popular PSK programs. There are a few
differences though. Some of the typing will
be “blind” — not all of the input characters
will be echoed to the display.

Before you begin to operate, you should
record your call sign in the modem’s
EEPROM. While in receive mode, type your
call sign and then press Ctrl+M.

Macro recording is initiated by pressing
Ctrl plus the function key that you want to
be associated with your macro. For example,
to use F1 for calling CQ, press Ctrl + F1.
Then begin typing “ cq cq cq de.” Now enter
Alt+M, press the space bar, enter Alt+M
again, press the space bar again, enter Alt+M
again, press the space bar, enter “K” and
finally enter Ctrl+Q. (Omit the quotes during
the typing). Now press F9 to store the macro.
When this macro is played during transmis-
sion, by pressing function key F1, it will call
CQ three times followed by your call sign 3
times, followed by “K,” and then the modem
will revert to receive. In this procedure, enter-
ing Alt+M informs the modem that you want
to insert your call sign into the transmit buf-
fer. Entering Ctrl+Q, inserts a special char-
acter, which the modem recognizes as “quit
transmitting and revert to receive.” Each
macro can contain up to 255 characters.

You can also record the “other sta-
tion’s” call sign in RAM (not in nonvolatile
EEPROM) by pressing Ctrl+T after first typ-
ing their call sign on the keyboard. To insert
the other station’s call sign into a macro,
simply use Alt+T in the macro. Then, when
you play the macro, the other station’s call
sign will be inserted into the macro. This
way, whenever you enter a new call sign
using Ctrl+T, you do not need to re-record
the macro to use the new call sign.

Menus
Configuration of the modem is done

through a menu system. For example, you
can select between PSK, QPSK, and QPSK
reversed. You can also change the software
squelch setting, the gain of the programmable
gain amplifier (PGA), turn CW Identification
on or off, turn the display backlight on or
off, change the tuning “increment,” monitor
battery voltage, or monitor the setting of the
TX audio potentiometer. Other items may be
added to the menu at a later time.

The menu system has two means of
access. If you wish to access the menus using
the keyboard, simply press F10 on the key-
board. Next enter a number on the keyboard
corresponding to the submenu that you wish
to access. Once this selection is made, choices
for the submenu will be displayed. Another
numeric entry will denote your selection.
With the keyboard menu system, entering the
submenu choice on the keyboard will cause an
exit from the configuration menu.

The second method of menu access is

through the “Select” button on the menu and
the rotary encoder. Pressing and holding the
Select button for more than ½ second will
activate the menu system. When initially
activated, the display will show “Configure”
on one line, followed by “Exit” on the line
below. If you wish to abort configuration,
simply tap the Select button at this time. If,
on the other hand, you wish to configure
one of the modem settings, simply rotate the
encoder clockwise, or counter clockwise,
to cycle through the top level menu selec-
tion. Once you see an item that you wish
to change, tap the Select button again. This
will then allow you to cycle through a list
of choices (again by rotating the encoder).
When the choice you wish to make appears
on the display, tap the Select button again.
This will record your choice, and the menu
will revert to the top level, showing “Exit” as
the default choice. You can now make addi-
tional changes, or tap the Select button again
to exit the Configuration menu.

Hot Keys
A number of “Hot Keys” have been

defined for use with the modem:
F1 to F7: Play Macros.
Ctrl-Fn: Record Macros — Enter key-

strokes. When finished, Press F9.
Alt-Fn: Delete Macro associated with

Fn.
F8: Toggle TUNE mode. May be accessed

only in RX or TX (Not in Setup, or Macro
Recording).

F11: Display the first few bytes stored in
EEPROM.

F12: Toggle between RX and TX (again,
not in Setup or Macro Recording).

F10: Display the main Setup Screen.
(Accessible only in RX mode).

#: A numeric selection from the Main
Menu, selects a submenu, which is then dis-
played. Another numeric selection activates
your selected parameter.

Ctrl-M: Save keyboard entries into a
fixed location in EEPROM (for recording
“my call sign,” for use in Macros).

Ctrl-T: Save keyboard entries into a
RAM location (for recording “their call sign”
— also for use in Macros).

Alt-M: Insert “my call sign” into a
Macro.

Alt-T: Insert “their call sign” into a
Macro.

Ctrl-F: Save the current frequency into
EEPROM so that it can be restored at the
next power-up.

Alt-F: Retrieve the saved frequency and
make it the current frequency.

Ctrl-Tab: Display the current (audio)
frequency.

Ctrl-A: Enable AFC.
Alt-A: Disable AFC.
PgUp: Increase PGA gain.
PgDn: Decrease PGA gain.
Ctrl-L: Clears the text area of the LCD.
Ctrl-K: Clears the keyboard buffer (while

receiving, keystrokes are not displayed —
this allows clearing the buffer, so that call
signs may be entered, or re-entered in case
you think that you have entered the wrong
call sign).

Ctrl-B: Clears the internal buffers.
Ctrl-Q Inserts a TX-OFF control charac-

ter in the TX buffer, or Macro.
Ctrl-O Toggles the display backlight on

and off.
Here is a useful combination of macros:
F1: CQ
F2: Call “them” twice w/ toggle
F3: Call “them” once w/o toggle
F4: BTU
F5: 73
F6: Brag File
F7: Test message
For your personal macros, choose what-

ever you want. You can create ones for con-
testing, or just for casual rag-chewing.

Updating the Modem with Newer
Features

Increasingly today, microcontroller proj-
ects have an ability to be “field updated”
with new features and software updates

14 QEX – Mar/Apr 2008

made available by the designers. So, instead
of needing to send your instrument back for
reprogramming to get these new capabilities
and bug fixes, you can simply download the
latest-and-greatest software from the Internet
and send it to the target hardware. The device
automatically updates its internal memory
with the new program. What a great way to
keep your project completely up to date with
the latest features!

We have incorporated this field updating
capability into the NUE-PSK Digital Modem.
You just need to connect your PC serial port to
the modem using a simple adapter, and send
it the new software obtained from the NUE-
PSK Web site whenever new capabilities are
made available.

We designed a TTL serial port into the
modem, accessible via a 4-pin connector, P4,
located inside the battery compartment. By
connecting your computer’s USB port to an
inexpensive USB-to-TTL adapter such as
the CP2102 from SparkFun and plugging the
CP2101 (or equivalent) into P4, the modem’s
“Load Software” menu selection will initiate
the bootload sequence to “burn” the new soft-
ware into the modem’s controller.9 Then, once
you power-cycle the modem, you’ll be running
the latest software release containing, for exam-
ple, a new digital mode, some new I/O capabili-
ties, and so on. This is really quite a convenient
and powerful capability for the project.

Possible Future Enhancements
Updating the graphics LCD to display

current spectral information consumes a
considerable fraction of the total processing
time. If all LCD display routines were to be
off-loaded to a small microcontroller, there
would be more time available for processing
faster digital modes, such as PSK63.

Additional dynamic range would be pos-
sible if an external ADC, with 16 to 24 bits,
were to be employed. The Austin QRP group
is currently evaluating ADCs and Codecs that
might be used in this application.

The next logical step in the evolution of
portable amateur radio digital communication
is decreased size and increased portability. We
envision someday — perhaps sooner rather
than later — having a completely integrated,
handheld digital modem and low-power
transceiver.

Conclusions
“On-Air” experience with the NUE-PSK

Digital Modems has clearly demonstrated the
effectiveness of the design, and its suitability
for portable digital-mode operations, with an
attractive, compact, low-power package. It is
also a testament to the wonderful design skills
of Moe Wheatley and his PSKcore software
engine, as well as to how evolving technology

continuously improves our options in amateur
radio.

We very much enjoyed collaborating on the
design of this project with several members of
our QRP clubs. We are confident that you will
enjoy the flexibility and power offered with the
NUE-PSK Digital Modem when used on your
bench or out under the stars.

Notes
1Peter Martinez, G3PLX, “PSK31: A New Radio-

Teletype Mode”, RadCom, Dec 1998 and Jan 1999.
(Reprinted in QEX, Jul/Aug 1999, pp 3-9).

2DigiPan software, v1.2 is available at members.
home.com/hteller/digipan. DigiPan stands for
“Digital Panoramic Tuning” and brings the ease and
simplicity of panoramic reception and transmission
to PSK31 operation. DigiPan provides a panoramic
display of the frequency spectrum in the form of
an active dial scale extending the full width of the
computer screen. Depending upon the transceiver
IF bandwidth, it is possible to “see” as many as
40 to 80 PSK31 stations at one time. DigiPan was
developed as freeware by Howard (Skip) Teller,
KH6TY/4 and Nick Fedoseev, UT2UZ.

3PSK-20 Transceiver Kit for PSK31, Small Wonder
Labs, Dave Benson, K1SWL (ex-NN1G). E-mail:
dave@smallwonderlabs.com, Web site: www.
smallwonderlabs.com

4George Heron, N2APB, “Portable PSK” project
www.njqrp.org/portablepsk

5Microchip: www.microchip.com. Technical docu-
mentation for the entire line of Microchip micro-
controllers is available. The MPLAB Integrated
Development Environment, and Student Edition C
compiler are available for free download.

6The AmQRP Club is selling the NUE-PSK Digital
Modem for $199 (US & Canada) or $219 (DX) as
a fully assembled and tested unit. (Price includes
shipping. CA residents please add 8.25% sales
tax.) Kits will be offered later this year. To order,
write a check/MO payable to “AmQRP Club” in
US funds, and send to “The American QRP Club,
2419 Feather Mae Ct, Forest Hill, MD 21050
USA”. Payment also accepted through PayPal to
amqrpkits@amqrp.org. See the NUE-PSK project
page for all details, including source code (www.
amqrp.org/kits/nue-psk). We expect to offer full kits
(all parts plus housing) and partial kits (PCB and
preprogrammed microcontrollers) later in the year.

7SchmartBoards: www.schmartboard.com See part
202-0011-01 (32-100 pin QFP, 0.5 mm).

8Moe Wheatley, AE4JY, “PSKCore,” www.qsl.
net/ae4jy/. For his source code, download
PSKCoresrc.zip. For the full technical specification,
download “PSKCore Interface Specification and
Technical Description Ver 1.40”

9USB “Breakout Board” Interface, SparkFun CP2102,
www.sparkfun.com/commerce/product_info.
php?products_id=198

Other Useful PSK31 Technology References:
Don Urbytes, W8LGV, “A PSK31 Tuning Aid,” QST,

Dec 1999, pp 35-37.
Steve Ford, WB8IMY, “PSK31 — Has RTTY’s

Replacement Arrived?,” QST, May 1999, pp 41-44.
Steve Ford, WB8IMY, “PSK31 2000,” QST May, 2000,

p 42.
Howard “Skip” Teller, KH6TY, and Dave Benson,

NN1G, “A Panoramic Transceiving System for
PSK31,” QST, June 2000, pp 31-37.

Dave Benson, K1SWL (ex-NN1G), “The NJ Warbler
— a PSK-80 Single Board Transceiver for PSK31,”
QRP Homebrewer, Summer 2000, pp 15-21.

Johan Forrer, KC7WW, “Using the Motorola
DSP56002EVM for Amateur Radio DSP Projects,”
QEX, Aug 1995, pp 14-20.

ARRL Web site collection of PSK31 articles, links,
literature and products: www.arrl.org/tis/info/
psk31.html

The “Official” Homepage of PSK31 is at aintel.
bi.ehu.es/psk31.html

Milt Cram, W8NUE, was first licensed in 1953
as WN8NUE and has held several calls (minus
the “N”) with an Amateur Extra class license.
He is a longtime homebrewer and member of the
Austin QRP Club, enjoying operating low power
and the digital modes on HF. Milt holds BEE,
MS and PhD degrees in electrical engineering
from Georgia Tech and comes from a family of
hams (dad, Ernie, W8JKX (SK), great uncle, Oz,
W1JUJ (SK), and son, Marc KC5RWZ). Milt is
now retired, after serving many years in elec-
tronic design and management.

George Heron, N2APB, has been a software
developer and technology manager in the north-
eastern US for more than 30 years, working in
later years in the field of information security.
He is the chief scientist for McAfee, helping to
develop new security products and technolo-
gies to protect home and corporate users. A
ham since 1968, he is an avid homebrewer in
RF and digital circuits, with a special interest in
DSP and microcontroller applications to QRP,
and has co-developed the Micro908 Antenna
Analyzer. He leads the New Jersey QRP and
the American QRP clubs, and has previously
edited/published QRP Homebrewer magazine
and Homebrewer Magazine.

